Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 36(2): 518-31, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758842

RESUMO

Numerous clinical reports underscore the frequency of olfactory impairments in patients suffering from major depressive disorders (MDDs), yet the underlying physiopathological mechanisms remain poorly understood. We hypothesized that one key link between olfactory deficits and MDD lies in hypercortisolemia, a cardinal symptom of MDD. Corticosterone (CORT) is known to negatively correlate with hippocampal neurogenesis, yet its effects on olfactory neurogenesis and olfaction remain unknown. Here we used a rodent model of anxiety/depression-like states, which is based on chronic CORT administration and studied the effects of the antidepressant fluoxetine (FLX) on behavior, olfaction, and adult neurogenesis in the dentate gyrus (DG), olfactory bulb (OB), and the olfactory epithelium (OE). Chronic CORT had no effect on cell proliferation in the OE or on olfactory sensory neurons projecting to the OB, but induced pronounced deficits in olfactory acuity, fine discrimination of odorants and olfactory memory. These alterations were accompanied by a significant decrease in the number of adult-born neurons in both the DG and OB. Remarkably, FLX not only reversed depression-like states as expected, but also improved olfactory acuity, memory, and restored impaired adult neurogenesis. However, fine olfactory discrimination was not restored. Morphological analysis of adult-born neurons in both the DG and the OB showed that dendritic complexity was not significantly affected by CORT, but was increased by FLX. These findings demonstrate an essential role for glucocorticoids in triggering olfactory impairments in MDD and highlight a novel therapeutic effect of FLX. SIGNIFICANCE STATEMENT: Increasing clinical reports show that major depression is characterized by pronounced olfactory deficits, yet the underlying mechanisms remain unknown. In this work, we used an endocrine model of depression to study whether hypothalamic-pituitary-adrenal axis perturbation could be sufficient to provoke olfactory impairments. We found that chronic corticosterone not only induces marked deficits in olfactory acuity, fine discrimination and olfactory memory, but also significantly decreases bulbar and hippocampal neurogenesis. Importantly, the antidepressant fluoxetine restores both adult neurogenesis and depressive states, and improves most olfactory functions. Our data reveal that impairment of hypothalamic-pituitary-adrenal axis during depression can lead to olfactory deficits and that the neurogenic effects of selective serotonin reuptake inhibitor antidepressants can successfully restore certain olfactory functions.


Assuntos
Ansiedade/complicações , Depressão/complicações , Neurogênese/fisiologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Animais , Anti-Inflamatórios/toxicidade , Antidepressivos de Segunda Geração/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Corticosterona/toxicidade , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fluoxetina/uso terapêutico , Asseio Animal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/patologia , Tempo de Reação/efeitos dos fármacos
2.
Neuropharmacology ; : 110065, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004413

RESUMO

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i.p.) 1 hour prior to ketamine or HNKs (10 mg/kg, i.p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 hours post-injection (t24h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.

3.
Am J Geriatr Psychiatry ; 21(5): 450-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23570888

RESUMO

OBJECTIVES: Brain molecular aging, the pervasive and consistent transcriptome changes associated with normal brain aging, appears to overlap with disease pathways and may be anticipated in neurodegenerative and neuropsychiatric diseases, including major depressive disorder (MDD). Here, we characterize the global interaction of MDD-related gene changes with age, starting from our previous report of downregulated brain-derived neurotrophic factor (BDNF) and BDNF-dependent genes in the amygdala of women with MDD. METHODS: A large-scale gene expression data set in the amygdala from a postmortem cohort of 21 women with MDD and 21 age-matched controls (age range: 16-74 years) was analyzed for correlations of gene transcript changes with age, in the presence or absence of a diagnosis of MDD. RESULTS: 1) The age-related decrease in BDNF transcripts observed in control subjects corresponds with further age-related decreases in BDNF and BDNF-dependent gene expression in MDD subjects; 2) most MDD-related genes are frequently age-regulated in both MDD and control subjects; 3) the effects of MDD and age are positively correlated; 4) most genes that are age-dependent in control subjects display greater age effects in MDD subjects; and 5) the increased prevalence of age effects in MDD corresponds to similar trends in controls, rather than representing de novo age effects. CONCLUSIONS: MDD strongly associates with robust and anticipated gene expression changes that occur during normal aging of the brain, suggesting that an older molecular age of the brain represents an early biological event and/or a marker of risk for subsequent onset of MDD symptoms.


Assuntos
Envelhecimento/genética , Envelhecimento/psicologia , Tonsila do Cerebelo/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Predisposição Genética para Doença/genética , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estudos de Casos e Controles , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Pessoa de Meia-Idade
4.
Biol Aujourdhui ; 217(3-4): 133-144, 2023.
Artigo em Francês | MEDLINE | ID: mdl-38018940

RESUMO

Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect. Neurochemical and behavioral changes are maintained 24 h after administration of ketamine, well beyond its plasma elimination half-life. The glutamatergic pyramidal cells of the medial prefrontal cortex are primarily implicated in the therapeutic effects of ketamine. Advances in knowledge of the consequences of R-NMDA blockade allowed to specify the underlying mechanisms involving the activation of AMPA glutamate receptors, which triggers a cascade of intracellular events dependent on the mechanistic target of rapamycin, brain-derived neurotrophic factor, and synaptic protein synthesis facilitating synaptic plasticity (number of dendritic spines, synaptogenesis). This review focuses on abnormalities of neurotransmitter systems involved in major depressive disorders, their potential impact on neural circuitry and beneficial effects of ketamine. Recent preclinical data pave the way for future studies to better clarify the mechanism of action of fast-acting antidepressant drugs for the development of novel, more effective therapies.


Title: La kétamine : un neuropsychotrope au mécanisme d'action innovant. Abstract: La kétamine, un antagoniste non compétitif du récepteur N-méthyl-D-aspartate (R-NMDA) du glutamate, possède un effet antidépresseur rapide (dès 24 h post-dose) et prolongé (jusqu'à une semaine) dans la dépression résistante au traitement par des antidépresseurs « classiques ¼ et dans les modèles rongeurs d'anxiété/dépression. Les arguments concernant ses mécanismes cellulaires et moléculaires sous-tendant son activité antidépressive viennent principalement d'études animales. Des débats persistent cependant sur le remodelage structurel des neurones frontocorticaux/hippocampiques et sur le rôle des neurotransmetteurs excitateurs/inhibiteurs impliqués dans cet effet comportemental observé chez l'animal. Les modifications neurochimiques et comportementales se maintiennent 24 h après l'administration de la kétamine, bien au-delà de sa demi-vie d'élimination plasmatique. L'avancée des connaissances sur les conséquences du blocage du R-NMDA permet de préciser les mécanismes sous-jacents impliquant (i) l'activation des récepteurs AMPA du glutamate, qui déclenche une cascade d'évènements intracellulaires dépendants de la cible mécanistique de la rapamycine, (ii) le facteur neurotrophique dérivé du cerveau et (iii) la synthèse de protéines synaptiques facilitant la plasticité synaptique (nombre d'épines dendritiques, synaptogenèse). Les cellules pyramidales glutamatergiques du cortex préfrontal médian sont principalement impliquées dans les effets thérapeutiques de la kétamine. La présente revue se concentre sur les anomalies des systèmes de neurotransmetteurs associées aux troubles dépressifs caractérisés, leur impact potentiel sur les circuits neuronaux et les effets bénéfiques de la kétamine. Les résultats d'études précliniques récentes devraient aider à orienter les futures études pour mieux préciser le mécanisme d'action des antidépresseurs d'action rapide et permettre ainsi le développement de nouvelles thérapies plus efficaces.


Assuntos
Transtorno Depressivo Maior , Ketamina , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Preparações Farmacêuticas , Transtorno Depressivo Maior/tratamento farmacológico , N-Metilaspartato/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido Glutâmico/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/uso terapêutico
5.
Fundam Clin Pharmacol ; 37(6): 1119-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37161789

RESUMO

Major depressive disorder (MDD) is a serious public health problem, as it is the most common psychiatric disorder worldwide. Antidepressant drugs increase adult hippocampal neurogenesis, which is required to induce some behavioral effects of antidepressants. Adult-born granule cells in the dentate gyrus (DG) and the glutamate receptors subunits 2 (GluN2B) subunit of N-methyl-D-aspartate (NMDA) ionotropic receptors play an important role in these effects. However, the precise neurochemical role of the GluN2B subunit of the NMDA receptor on adult-born GCs for antidepressant-like effects has yet to be elucidated. The present study aims to explore the contribution of the GluN2B-containing NMDA receptors in the ventral dentate gyrus (vDG) to the antidepressant drug treatment using a pharmacological approach. Thus, (αR)-(4-hydroxyphenyl)-(ßS)-methyl-4-(phenylmethyl)-1-piperidinepropanol (Ro25-6981), a selective antagonist of the GluN2B subunit, was acutely administered locally into the ventral DG (vDG, 1 µg each side) following a chronic fluoxetine (18 mg/kg/day) treatment-known to increase adult hippocampal neurogenesis-in a mouse model of anxiety/depression. Responses in a neurogenesis-dependent task, the novelty suppressed feeding (NSF), and neurochemical consequences on extracellular glutamate and gamma-aminobutyric acid (GABA) levels in the vDG were measured. Here, we show a rapid-acting antidepressant-like effect of local Ro25-6981 administration in the NSF independent of fluoxetine treatment. Furthermore, we revealed a fluoxetine-independent increase in the glutamatergic transmission in the vDG. Our results suggest behavioral and neurochemical effects of GluN2B subunit independent of serotonin reuptake inhibition.


Assuntos
Transtorno Depressivo Maior , Fluoxetina , Humanos , Camundongos , Animais , Fluoxetina/farmacologia , Receptores de N-Metil-D-Aspartato , Ácido Glutâmico , Transtorno Depressivo Maior/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios , Antidepressivos/farmacologia , Transmissão Sináptica
6.
J Neuroendocrinol ; 35(12): e13344, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857383

RESUMO

OBJECTIVES: Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS: Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS: HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION: Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.


Assuntos
Glucagon , Hipoglicemia , Humanos , Neurônios Serotoninérgicos , Serotonina/farmacologia , Hipoglicemia/induzido quimicamente , Insulina/farmacologia , Glucose , Doença Iatrogênica
7.
Int J Neuropsychopharmacol ; 15(3): 321-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21473810

RESUMO

Agomelatine (S20098) is a novel antidepressant drug with melatonergic agonist and 5-HT2C receptor antagonist properties, displaying antidepressant/anxiolytic-like properties in animal models and in humans. In a depression/anxiety-like mouse model in which the response of the HPA axis is blunted, we investigated whether agomelatine could reverse behavioural deficits related to depression/anxiety compared to the classical selective serotonin reuptake inhibitor, fluoxetine. Adult mice were treated for 8 wk with either vehicle or corticosterone (35 µg/ml.d) via drinking water. During the final 4 wk, animals were treated with vehicle, agomelatine (10 or 40 mg/kg i.p.) or fluoxetine (18 mg/kg i.p.) and tested in several behavioural paradigms and also evaluated for home-cage activity. Our results showed that the depressive/anxiety-like phenotype induced by corticosterone treatment is reversed by either chronic agomelatine or fluoxetine treatment. Moreover, agomelatine increased the dark/light ratio of home-cage activity in vehicle-treated mice and reversed the alterations in this ratio induced by chronic corticosterone, suggesting a normalization of disturbed circadian rhythms. Finally, we investigated the effects of this new antidepressant on neurogenesis. Agomelatine reversed the decreased cell proliferation in the whole hippocampus in corticosterone-treated mice and increased maturation of newborn neurons in both vehicle- and corticosterone-treated mice. Overall, the present study suggests that agomelatine, with its distinct mechanism of action based on the synergy between the melatonergic agonist and 5-HT2C antagonist properties, provides a distinct antidepressant/anxiolytic spectrum including circadian rhythm normalization.


Assuntos
Acetamidas/farmacologia , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Animais , Transtornos de Ansiedade/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Corticosterona , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
8.
Front Pharmacol ; 13: 993449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386166

RESUMO

Major depressive disorder (MDD) is the psychiatric disorder with the highest prevalence in the world. Pharmacological antidepressant treatment (AD), such as selective serotonin reuptake inhibitors [SSRI, i.e., fluoxetine (Flx)] is the first line of treatment for MDD. Despite its efficacy, lack of AD response occurs in numerous patients characterizing Difficult-to-treat Depression. ElectroConvulsive Therapy (ECT) is a highly effective treatment inducing rapid improvement in depressive symptoms and high remission rates of ∼50-63% in patients with pharmaco-resistant depression. Nevertheless, the need to develop reliable treatment response predictors to guide personalized AD strategies and supplement clinical observation is becoming a pressing clinical objective. Here, we propose to establish a proteomic peripheral biomarkers signature of ECT response in an anxio/depressive animal model of non-response to AD. Using an emotionality score based on the analysis complementary behavioral tests of anxiety/depression (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test), we showed that a 4-week corticosterone treatment (35 µg/ml, Cort model) in C57BL/6JRj male mice induced an anxiety/depressive-like behavior. A 28-day chronic fluoxetine treatment (Flx, 18 mg/kg/day) reduced corticosterone-induced increase in emotional behavior. A 50% decrease in emotionality score threshold before and after Flx, was used to separate Flx-responding mice (Flx-R, n = 18), or Flx non-responder mice (Flx-NR, n = 7). Then, Flx-NR mice received seven sessions of electroconvulsive seizure (ECS, equivalent to ECT in humans) and blood was collected before and after ECS treatment. Chronic ECS normalized the elevated emotionality observed in Flx-NR mice. Then, proteins were extracted from peripheral blood mononuclear cells (PBMCs) and isolated for proteomic analysis using a high-resolution MS Orbitrap. Data are available via ProteomeXchange with identifier PXD037392. The proteomic analysis revealed a signature of 33 peripheral proteins associated with response to ECS (7 down and 26 upregulated). These proteins were previously associated with mental disorders and involved in regulating pathways which participate to the depressive disorder etiology.

9.
Eur J Neurosci ; 30(3): 397-414, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19656174

RESUMO

GPR88, an orphan G protein-coupled receptor, was designated Strg/GPR88 for striatum-specific G protein-coupled receptor (K. Mizushima et al. (2000)Genomics, 69, 314-321). In this study, we focused on striatal GPR88 protein localization using a polyclonal antibody. We established that the distribution of immunoreactivity in rat brain matched that of GPR88 transcripts and provided evidence for its exclusive neuronal expression. GPR88 protein is abundant throughout the striatum of rat and primate, with expression limited to the two subsets of striatal projection medium spiny neurons (MSNs) expressing preprotachykinin-substance P or preproenkephalin mRNAs. Ultrastructural immunolabelling revealed the GPR88 concentration at post-synaptic sites along the somatodendritic compartments of MSNs, with pronounced preference for dendrites and dendritic spines. The GPR88-rich expression, in both striatal output pathways, designates this receptor as a potential therapeutic target for diseases involving dysfunction of the basal ganglia, such as Parkinson's disease. Hence, we investigated changes of GPR88 expression in a model of Parkinson's disease (unilateral 6-hydroxydopamine-lesioned rats) following repeated L-DOPA treatment. In dopamine-depleted striatum, GPR88 expression was differentially regulated, i.e. decreased in striatopallidal and increased in striatonigral MSNs. L-DOPA treatment led to a normalization of GPR88 levels through dopamine D1 and D2 receptor-mediated mechanisms in striatopallidal and striatonigral MSNs, respectively. Moreover, the removal of corticostriatal inputs, by ibotenate infusion, downregulated GPR88 in striatopallidal MSNs. These findings provide the first evidence that GPR88 is confined to striatal MSNs and indicate that L-DOPA-mediated behavioural effects in hemiparkinsonian rats may involve normalization of striatal GPR88 levels probably through dopamine receptor-mediated mechanisms and modulations of corticostriatal pathway activity.


Assuntos
Corpo Estriado/metabolismo , Neurônios Aferentes/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Animais , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dopamina/metabolismo , Dopaminérgicos/farmacologia , Imunofluorescência , Glutamina/metabolismo , Haplorrinos , Imuno-Histoquímica , Hibridização In Situ , Levodopa/farmacologia , Masculino , Microscopia Eletrônica de Transmissão , Neurônios Aferentes/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar
10.
Pharmacol Biochem Behav ; 90(2): 174-83, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17980409

RESUMO

In vivo intracerebral microdialysis is an important neurochemical technique that has been applied extensively in genetic and pharmacological studies aimed at investigating the relationship between neurotransmitters. Among the main interests of microdialysis application is the infusion of drugs through the microdialysis probe (reverse dialysis) in awake, freely moving animals. As an example of the relevance of intracerebral microdialysis, this review will focus on our recent neurochemical results showing the impact of Brain-Derived Neurotrophic Factor (BDNF) on serotonergic neurotransmission in basal and stimulated conditions. Indeed, although the elevation of 5-HT outflow induced by chronic administration of selective serotonin reuptake inhibitors (SSRIs) causes an increase in BDNF protein levels and expression (mRNA) in the hippocampus of rodents, the reciprocal interaction has not been demonstrated yet. Thus, the neurochemical sight of this question will be addressed here by examining the consequences of either a constitutive decrease or increase in brain BDNF protein levels on hippocampal extracellular levels of 5-HT in conscious mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Hipocampo/metabolismo , Microdiálise/métodos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Citalopram/metabolismo , Camundongos , Paroxetina/farmacologia , RNA Mensageiro/análise , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia
11.
Neurosci Res ; 134: 56-60, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29246683

RESUMO

The dentate gyrus (DG) has distinct roles along its dorso-ventral axis. In the mouse, we recently demonstrated that dorsal DG (dDG) stimulation enhances exploratory behavior (Kheirbek et al., 2013). Dopamine (DA) release in the Nucleus Accumbens (NAcc), which belongs to the reward system, could be a key target of dDG mediating this motivation-related behavior. Here, an optogenetic stimulation of either ventral (vDG) or dDG granule cells was coupled with NAcc DA release monitoring using in vivo microdialysis. Only dDG stimulation enhanced NAcc DA release, indicating differential interconnections between dDG and vDG to the reward system.


Assuntos
Giro Denteado/citologia , Dopamina/metabolismo , Vias Neurais/fisiologia , Núcleo Accumbens/metabolismo , Optogenética , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estimulação Elétrica , Camundongos , Camundongos Transgênicos , Microdiálise , Núcleo Accumbens/citologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Transmissão Sináptica/genética , Fatores de Tempo
12.
Front Pharmacol ; 9: 204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593535

RESUMO

Major Depressive Disorders (MDD) patients may exhibit cognitive deficits and it is currently unclear to which degree treatment with antidepressants may affect cognitive function. Preclinical and clinical observations showed that vortioxetine (VORT, an antidepressant with multimodal activity), presents beneficial effects on aspects of cognitive function. In addition, VORT treatment increases adult hippocampal neurogenesis (AHN) in rodents, a candidate mechanism for antidepressant activity. Pattern separation (PS) is the ability to discriminate between two similar contexts/events generating two distinct and non-overlapping representations. Impaired PS may lead to overgeneralization and anxiety disorders. If PS impairments were described in depressed patients, the consequences of antidepressant treatment on context discrimination (CD) are still in its infancy. We hypothesized that VORT-increased AHN may improve CD. Thus, in an attempt to elucidate the molecular mechanism underpinning VORT treatment effects on CD, a rodent model of PS, the role of AHN and stress-induced c-Fos activation was evaluated in the adult mouse hippocampus. Chronic treatment with VORT (1.8 g/kg of food weight; corresponding to a daily dose of 10 mg/kg, 3 weeks) improved CD in mice. Interestingly, chronic treatment with VORT reversed ablation of AHN-induced delay in CD and freezing behavior. VORT treatment decreased stress-induced c-Fos activation in the dorsal but not ventral dentate gyrus. VORT treatment did not affect c-Fos activity in the hippocampus of mice with ablated neurogenesis. This study highlights a role of VORT in CD, which may be independent from AHN and hippocampal c-Fos activation. Further studies elucidating the mechanisms underlying VORT's effects in CD could contribute to future strategies for alleviating the disease burden for individuals suffering from depression and/or anxiety disorders.

13.
Mol Pharmacol ; 72(6): 1411-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17890358

RESUMO

Preclinical studies suggest that substance P (SP) neurokinin 1 (NK1) receptor antagonists are efficient in the treatment of anxiety and depression. This therapeutic activity could be mediated via stimulation of serotonin (5-HT) neurons located in the dorsal raphe nucleus (DRN), which receive important SP-NK1 receptor immunoreactive innervations. The present study examined the effects of intraraphe injection of SP on extracellular 5-HT levels in the frontal cortex, ventral hippocampus, and DRN by using intracerebral microdialysis in conscious mice. Intraraphe SP injection dose dependently decreased cortical 5-HT release, whereas no effects were detected in the ventral hippocampus. Cortical effects were blocked by the selective NK1 receptor antagonist N-[[2-methoxy-5-[5-(trifluoromethyl)tetrazol-1-yl]phenyl]methyl]-2-phenylpiperidin-3-amine (GR205171) and completely dampened in mice lacking NK1 receptors. Furthermore, genetic (in knockout 5-HT1A(-/-) mice) or pharmacological inactivation of 5-HT1A autoreceptors blocked cortical responses to SP. Contrasting with its cortical effects, intraraphe SP injection increased 5-HT outflow in the DRN in wild-type mice; this effect was potentiated by a local perfusion of the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Finally, SP-induced changes in frontal cortex and DRN dialysate 5-HT levels were blocked by the DRN perfusion of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate ionotropic receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). These data support the hypothesis that SP-induced over-activation of 5-HT1A autoreceptors within the DRN limits cortical 5-HT release. A better knowledge of the complex relationship between tachykininergic, serotonergic, and glutamatergic systems within the DRN might help better understand the pathophysiology and subsequent treatment of depression.


Assuntos
Lobo Frontal/metabolismo , Núcleos da Rafe/metabolismo , Receptores da Neurocinina-1/metabolismo , Serotonina/metabolismo , Substância P/fisiologia , Animais , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Receptores da Neurocinina-1/fisiologia , Substância P/administração & dosagem , Substância P/metabolismo
14.
Exp Clin Psychopharmacol ; 25(2): 94-104, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287792

RESUMO

Understanding the pathophysiology of affective disorders and their treatment relies on the availability of experimental models that mimic aspects of the disease. Most of the studies on depressive disorders are conducted with male rodents, mostly because including females in protocols is more difficult. Indeed, there is a complex series of changes in the brain of females due to the estrous cycle, adding an important variability factor to the disease. However, twice as many women as men have a lifetime diagnosis of major depressive disorder (MDD), so we need to develop reliable female models of depression to improve our understanding of this disease. Here, we describe the effects of chronic corticosterone administration (CORT) on female mice, a procedure known to enhance behavioral emotionality in male mice. A dose-response study showed that 4 weeks of CORT exposure at 35 µg/ml in the drinking water enhanced the emotionality score of female mice, but with a very small size effect. Tests of longer treatment duration failed to potentiate the behavioral effects of CORT. As some steps of adult hippocampal neurogenesis are known to be sensitive to chronic CORT exposure, cell proliferation and survival, as well as neuronal maturation in the dentate gyrus of the hippocampus, analyses revealed no effect of chronic CORT exposure in female mice. Overall, this study showed that female C57BL6 mice are insensitive to chronic CORT as a way to model anxio-depressive-like behavior. (PsycINFO Database Record


Assuntos
Comportamento Animal/efeitos dos fármacos , Corticosterona/farmacologia , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Animais , Proliferação de Células/efeitos dos fármacos , Corticosterona/administração & dosagem , Depressão/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Fatores de Tempo
15.
Front Pharmacol ; 8: 462, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769796

RESUMO

Glutamatergic dysfunctions are observed in the pathophysiology of depression. The glutamatergic synapse as well as the AMPA receptor's (AMPAR) activation may represent new potential targets for therapeutic intervention in the context of major depressive disorders. S 47445 is a novel AMPARs positive allosteric modulator (AMPA-PAM) possessing procognitive, neurotrophic properties and enhancing synaptic plasticity. Here, we investigated the antidepressant/anxiolytic-like effects of S 47445 in a mouse model of anxiety/depression based on chronic corticosterone administration (CORT) and in the Chronic Mild Stress (CMS) model in rats. Four doses of S 47445 (0.3 to 10 mg/kg, oral route, 4 and 5 weeks, respectively) were assessed in both models. In mouse, behavioral effects were tested in various anxiety-and depression-related behaviors : the elevated plus maze (EPM), open field (OF), splash test (ST), forced swim test (FST), tail suspension test (TST), fur coat state and novelty suppressed feeding (NSF) as well as on hippocampal neurogenesis and dendritic arborization in comparison to chronic fluoxetine treatment (18 mg/kg, p.o.). In rats, behavioral effects of S 47445 were monitored using sucrose consumption and compared to those of imipramine or venlafaxine (10 mg/kg, i.p.) during the whole treatment period and after withdrawal of treatments. In a mouse model of genetic ablation of hippocampal neurogenesis (GFAP-Tk model), neurogenesis dependent/independent effects of chronic S 47445 treatment were tested, as well as BDNF hippocampal expression. S 47445 reversed CORT-induced depressive-like state by increasing grooming duration and reversing coat state's deterioration. S 47445 also decreased the immobility duration in TST and FST. The highest doses (3 and 10 mg/kg) seem the most effective for antidepressant-like activity in CORT mice. Furthermore, S 47445 significantly reversed the anxiety phenotype observed in OF (at 1 mg/kg) and EPM (from 1 mg/kg). In the CMS rat model, S 47445 (from 1 mg/kg) demonstrated a rapid onset of effect on anhedonia compared to venlafaxine and imipramine. In the CORT model, S 47445 demonstrated significant neurogenic effects on proliferation, survival and maturation of hippocampal newborn neurons at doses inducing an antidepressant-like effect. It also corrected CORT-induced deficits of growth and arborization of dendrites. Finally, the antidepressant/anxiolytic-like activities of S 47445 required adult hippocampal neurogenesis in the novelty suppressed feeding test contrary to OF, EPM and ST. The observed increase in hippocampal BDNF levels could be one of the mechanisms of S 47445 responsible for the adult hippocampal neurogenesis increase. Altogether, S 47445 displays robust antidepressant-anxiolytic-like properties after chronic administration through neurogenesis dependent/independent mechanisms and neuroplastic activities. The AMPA-PAM S 47445 could have promising therapeutic potential for the treatment of major depressive disorders or generalized anxiety disorders.

16.
Front Cell Neurosci ; 11: 237, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860968

RESUMO

The incorporation of peripheral biomarkers in the treatment of major depressive disorders (MDD) could improve the efficiency of treatments and increase remission rate. Peripheral blood mononuclear cells (PBMCs) represent an attractive biological substrate allowing the identification of a drug response signature. Using a proteomic approach with high-resolution mass spectrometry, the present study aimed to identify a biosignature of antidepressant response (fluoxetine, a Selective Serotonin Reuptake Inhibitor) in PBMCs in a mouse model of anxiety/depression. Following determination of an emotionality score, using complementary behavioral analysis of anxiety/depression across three different tests (Elevated Plus Maze, Novelty Suppressed Feeding, Splash Test), we showed that a 4-week corticosterone treatment (35 µg/ml, CORT model) in C57BL/6NTac male mice induced an anxiety/depressive-like behavior. Then, chronic fluoxetine treatment (18 mg/kg/day for 28 days in the drinking water) reduced corticosterone-induced increase in emotional behavior. However, among 46 fluoxetine-treated mice, only 30 of them presented a 50% decrease in emotionality score, defining fluoxetine responders (CORT/Flx-R). To determine a peripheral biological signature of fluoxetine response, proteomic analysis was performed from PBMCs isolated from the "most" affected corticosterone/vehicle (CORT/V), corticosterone/fluoxetine responders and non-responders (CORT/Flx-NR) animals. In comparison to CORT/V, a total of 263 proteins were differently expressed after fluoxetine exposure. Expression profile of these proteins showed a strong similarity between CORT/Flx-R and CORT/Flx-NR (R = 0.827, p < 1e-7). Direct comparison of CORT/Flx-R and CORT/Flx-NR groups revealed 100 differently expressed proteins, representing a combination of markers associated either with the maintenance of animals in a refractory state, or associated with behavioral improvement. Finally, 19 proteins showed a differential direction of expression between CORT/Flx-R and CORT/Flx-NR that drove them away from the CORT-treated profile. Among them, eight upregulated proteins (RPN2, HSPA9, NPTN, AP2B1, UQCRC2, RACK-1, TOLLIP) and one downregulated protein, TLN2, were previously associated with MDD or antidepressant drug response in the literature. Future preclinical studies will be required to validate whether proteomic changes observed in PBMCs from CORT/Flx-R mice mirror biological changes in brain tissues.

17.
Sci Rep ; 7: 42946, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218311

RESUMO

Strategies designed to increase adult hippocampal neurogenesis (AHN) may have therapeutic potential for reversing memory impairments. H3 receptor antagonists/inverse agonists also may be useful for treating cognitive deficits. However, it remains unclear whether these ligands have effects on AHN. The present study aimed to investigate the effects of a 28-day treatment with S 38093, a novel brain-penetrant antagonist/inverse agonist of H3 receptors, on AHN (proliferation, maturation and survival) in 3-month-old and in aged 16-month-old mice. In addition, the effects of S 38093 treatment on 7-month-old APPSWE Tg2576 transgenic mice, a model of Alzheimer's disease, were also assessed. In all tested models, chronic treatment with S 38093 stimulated all steps of AHN. In aged animals, S 38093 induced a reversal of age-dependent effects on hippocampal brain-derived neurotrophic factor (BDNF) BDNF-IX, BDNF-IV and BDNF-I transcripts and increased vascular endothelial growth factor (VEGF) expression. Finally, the effects of chronic administration of S 38093 were assessed on a neurogenesis-dependent "context discrimination (CS) test" in aged mice. While ageing altered mouse CS, chronic S 38093 treatment significantly improved CS. Taken together, these results provide evidence that chronic S 38093 treatment increases adult hippocampal neurogenesis and may provide an innovative strategy to improve age-associated cognitive deficits.


Assuntos
Envelhecimento , Compostos Azabicíclicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Neurogênese/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Giro Denteado/metabolismo , Modelos Animais de Doenças , Agonismo Inverso de Drogas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Neuropsychopharmacology ; 31(10): 2162-72, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16452992

RESUMO

Selective serotonin reuptake inhibitors like paroxetine (Prx) often requires 4-6 weeks to achieve clinical benefits in depressed patients. Pindolol shortens this delay and it has been suggested that this effect is mediated by somatodendritic 5-hydroxytryptamine (5-HT) 1A autoreceptors. However clinical data on the beneficial effects of pindolol are conflicting. To study the effects of (+/-)-pindolol-paroxetine administration, we used genetical and pharmacological approaches in 5-HT1A knockout mice (5-HT1A-/-). Two assays, in vivo intracerebral microdialysis in awake mice and the forced swimming test (FST), were used to assess the antidepressant-like effects of this drug combination. Basal levels of extracellular serotonin, 5-HT ([5-HT]ext) in the frontal cortex (FCX) and the dorsal raphe nucleus (DRN) did not differ between the two strains of mice, suggesting a lack of tonic control of 5-HT1A autoreceptors on nerve terminal 5-HT release. Prx (1 and 4 mg/kg) dose-dependently increased cortical [5-HT]ext in both genotypes, but the effects were greater in mutants. The selective 5-HT1A receptor antagonist, WAY-100635 (0.5 mg/kg), or (+/-)-pindolol (5 and 10 mg/kg) potentiated the effects of Prx (4 mg/kg) on cortical [5-HT]ext in 5-HT1A+/+, but not in 5-HT1A-/- mice. Similar responses were obtained following local intra-raphe perfusion by reverse microdialysis of either WAY-100635 or (+/-)-pindolol (100 microM each). In the FST, Prx administration dose-dependently decreased the immobility time in both strains of mice, but the response was much greater in 5HT1A-/- mice. In contrast, (+/-)-pindolol blocked Prx-induced decreases in the immobility time while WAY-100635 had no effect in both genotypes. These findings using 5-HT1A-/- mice confirm that (+/-)-pindolol behaves as an antagonist of 5-HT1A autoreceptor in mice, but its blockade of paroxetine-induced antidepressant-like effects in the FST may be due to its binding to other neurotransmitter receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Pindolol/farmacologia , Receptor 5-HT1A de Serotonina/deficiência , Antagonistas da Serotonina/farmacologia , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Análise de Variância , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Interações Medicamentosas , Resposta de Imobilidade Tônica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise/métodos , Paroxetina/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Natação
19.
Neurosci Lett ; 616: 197-203, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26850572

RESUMO

Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD.


Assuntos
Compostos de Anilina/farmacologia , Ansiedade/psicologia , Depressão/psicologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Piperidinas/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Aprendizagem por Associação/efeitos dos fármacos , Corticosterona , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Piperidinas/uso terapêutico , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
20.
Pharmaceuticals (Basel) ; 9(1)2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26901205

RESUMO

Major Depressive Disorder (MDD) is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age) could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA