Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 51, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355518

RESUMO

BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.


Assuntos
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptose , Leucemia/tratamento farmacológico , Necrose
2.
Photochem Photobiol Sci ; 23(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057632

RESUMO

PURPOSE: Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS: Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS: The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION: The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.


Assuntos
Antioxidantes , Músculo Esquelético , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Músculo Esquelético/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Células Musculares/metabolismo
3.
Amino Acids ; 55(7): 913-929, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258638

RESUMO

Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.


Assuntos
Aminoácidos , Lisina , Animais , Bovinos , Ratos , Aminoácidos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Lisina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Temozolomida
4.
Eur J Nutr ; 60(7): 3947-3957, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33913012

RESUMO

BACKGROUND AND AIMS: Malnutrition in the early stages of life may lead to changes in the glycemic metabolism during adulthood, such as pancreatic beta cells dysfunction and failure. Therefore, this study aimed to evaluate the effects of an in vitro amino acid restriction model on the function and viability of pancreatic beta cells. METHODS: Insulin-producing cells (INS-1E) were maintained in control or amino acid restricted culture medium containing 1 × or 0.25 × of amino acids, respectively, for 48 h. RESULTS: Amino acid restricted group showed lower insulin secretion and insulin gene expression, reduced mitochondrial oxygen consumption rate and reactive oxygen species production. Besides, amino acid restricted group also showed higher levels of endoplasmic reticulum stress and apoptosis markers and enhanced Akt phosphorylation. However, even with higher levels of apoptosis markers, amino acid restricted group did not show higher levels of cell death unless the PI3K/Akt pathway was inhibited. CONCLUSION: Amino acid restricted beta cell viability seems to be dependent on the PI3K/Akt pathway.


Assuntos
Aminoácidos , Células Secretoras de Insulina , Transdução de Sinais , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA