Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1132151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468851

RESUMO

Introduction: The variation in bacterial communities among breeds has been previously reported and may be one of the reasons why Holstein × Gyr dairy heifers have better development in grazing systems in tropical conditions. This study aimed to explore the ruminal microbiota composition, the IL-1ß gene variation, tick incidence, and blood parameters of Holstein × Gyr (½ Holstein × ½ Gyr) and Holstein heifers grazing intensely managed Guinea grass (Panicum maximum Jacq. cv. Mombaça). Methods: Sixteen heifers were divided into two groups consisting of 8 Holstein × Gyr and 8 Holstein heifers. The experimental period was comprised of 3 periods of 21 days. Ruminal samples were taken via the stomach tube technique. The sequencing of the V4 hypervariable region of the 16S rRNA gene was performed using the Illumina MiSeq platform. Counting and collection of ticks were conducted each 21 days. Blood and skeletal muscle tissue biopsies were performed at the end of the experiment. Results: Firmicutes were the most abundant phyla present in both breed rumen samples and Bacteroidota showed differences in relative abundance between breed groups, with greater values for Holstein heifers (p < 0.05 with FDR correction). The 10 most abundant unique OTUs identified in each breed included several OTUs of the genus Prevotella. Holstein heifers had a greater tick count and weight (9.8 ticks/animal and 1.6 g/animal, respectively) than Holstein × Gyr (2.56 ticks/animal and 0.4 g/animal, respectively). We found nucleotide substitutions in the IL-1ß gene that might be related to adaptation and resistance phenotypes to tick infestation in Holstein × Gyr heifers. Blood concentrations of urea, albumin, insulin-like growth factor 1, triiodothyronine, and thyroxine were greater in Holstein × Gyr than in Holstein heifers. Conclusion: Adaptations in Holstein × Gyr heifers such as ruminal microbiota, tick resistance, nucleotide substitutions in IL-1ß gene, and hormone concentration suggest a better energy metabolism and thermoregulation resulting in better performance in tropical grazing systems.

2.
PLoS One ; 15(10): e0239786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027259

RESUMO

Evaluations of replacement heifers in intensively managed grazing systems in tropical conditions are warranted. Thus, we aimed to evaluate performance, muscle and mammary gland development, oocyte quality, and in vitro production of embryos of crossbred heifers grazing an intensively managed pasture and supplemented with high or low protein concentrates. Eighteen pubertal crossbred heifers (Holstein x Gyr) with an initial weight of 350 ± 8.0 kg were used in a 60-day trial. Two supplement types, 12% crude protein (CP) (S12CP) or 24% CP (S24CP), and a control treatment (mineral mixture, CON) were randomly distributed to the heifers. Throughout the experiment, four digestibility trials were performed over four consecutive days. Four ovarium pick-ups were performed to evaluate oocyte quality and in vitro embryo production. Lastly, ultrasounds of carcasses and mammary glands were performed. The intakes of dry matter (DM), digestible energy (DE), and CP were greater for supplemented (SUP) compared with CON heifers. The SUP heifers had a greater average daily gain (ADG) (645 versus 390 g/d) and rib eye area (58.78 versus 53.32 cm2) than the CON heifers. Oocyte recovery, quality, and follicle features were not affected by supplementation strategy. However, the cleavage rate (47.17% versus 30.31%) and blastocyst rate (27.91% versus 10.12%) were negatively affected by supplementation. The S12CP presented a blastocyst rate much lower than the S24CP (3.02% versus 17.23%). Carcass ultrasonography indicated a trend for greater rib eye area for S24CP and mammary ultrasonography indicated no effects of supplementation on mammary gland development. In summary, supplementation seems to be an appropriate strategy for satisfactory performance, with greater muscle deposition and no negative impacts on mammary gland development. However, in vitro embryo production was impaired when the animals received the supplementation with 12% CP.


Assuntos
Ração Animal , Bovinos/crescimento & desenvolvimento , Suplementos Nutricionais , Reprodução , Animais , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Oócitos/crescimento & desenvolvimento , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA