Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426549

RESUMO

The effects of climate change are often body size dependent. One contributing factor could be size-dependent thermal tolerance (SDTT), the propensity for heat and cold tolerance to vary with body size among species and among individuals within species. SDTT is hypothesized to be caused by size differences in the temperature dependence of underlying physiological processes that operate at the cellular and organ/system level (physiological SDTT). However, temperature-dependent physiology need not change with body size for SDTT to be observed. SDTT can also arise because of physical differences that affect the relative body temperature dynamics of large and small organisms (physical SDTT). In this Commentary, I outline how physical SDTT occurs, its mechanistic differences from physiological SDTT, and how physical and physiological SDTT make different predictions about organismal responses to thermal variation. I then describe how physical SDTT can influence the outcome of thermal tolerance experiments, present an experimental framework for disentangling physical and physiological SDTT, and provide examples of tests for physiological SDTT that control for physical effects using data from Anolis lizards. Finally, I discuss how physical SDTT can affect organisms in natural environments and influence their vulnerability to anthropogenic warming. Differentiating between physiological and physical SDTT is important because it has implications for how we design and interpret thermal tolerance experiments and our fundamental understanding of thermal ecology and thermal adaptation.


Assuntos
Aclimatação , Lagartos , Humanos , Animais , Temperatura , Temperatura Baixa , Temperatura Alta , Mudança Climática , Tamanho Corporal , Lagartos/fisiologia , Adaptação Fisiológica
2.
Glob Chang Biol ; 29(22): 6157-6158, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605968

RESUMO

Habitat degradation removes shaded microhabitats that serve as thermal refuges, but not all microhabitats provide equally valuable shade.

3.
Glob Chang Biol ; 29(13): 3519-3524, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272873

RESUMO

Thermal tolerance plasticity is a core mechanism by which organisms can mitigate the effects of climate change. As a result, there is a need to understand how variation in tolerance plasticity arises. The baseline tolerance/plasticity trade-off hypothesis (hereafter referred to as the trade-off hypothesis, TOH) has recently emerged as a potentially powerful explanation. The TOH posits that organisms with high baseline thermal tolerance have reduced thermal tolerance plasticity relative to those with low baseline tolerance. Many studies have found support for the TOH. However, this support must be regarded cautiously because the most common means of testing the TOH can yield spurious "trade-offs" due to regression to the mean. I acquired data for 25 previously published analyses that supported the TOH at the intraspecific level and reanalyzed them after applying a method that adjusts plasticity estimates for regression to the mean. Only six of the 25 analyses remained statistically significant after adjustment, and effect size and variance explained decreased in all cases. The few data sets in which support for the TOH was maintained after adjustment point to areas of future study, but are too few to make generalizations at this point. In sum, regression to the mean has led to a substantial overestimation of support for the TOH and must be accounted for in future tests of the hypothesis.


Assuntos
Adaptação Fisiológica , Mudança Climática , Aclimatação , Temperatura
4.
Biol Lett ; 19(7): 20230174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433329

RESUMO

Adaptive thermal tolerance plasticity can dampen the negative effects of warming. However, our knowledge of tolerance plasticity is lacking for embryonic stages that are relatively immobile and may benefit the most from an adaptive plastic response. We tested for heat hardening capacity (a rapid increase in thermal tolerance that manifests in minutes to hours) in embryos of the lizard Anolis sagrei. We compared the survival of a lethal temperature exposure between embryos that either did (hardened) or did not (not hardened) receive a high but non-lethal temperature pre-treatment. We also measured heart rates (HRs) at common garden temperatures before and after heat exposures to assess metabolic consequences. 'Hardened' embryos had significantly greater survival after lethal heat exposure relative to 'not hardened' embryos. That said, heat pre-treatment led to a subsequent increase in embryo HR that did not occur in embryos that did not receive pre-treatment, indicative of an energetic cost of mounting the heat hardening response. Our results are not only consistent with adaptive thermal tolerance plasticity in these embryos (greater heat survival after heat exposure), but also highlight associated costs. Thermal tolerance plasticity may be an important mechanism by which embryos respond to warming that warrants greater consideration.


Assuntos
Temperatura Alta , Lagartos , Animais , Temperatura , Adaptação Fisiológica , Frequência Cardíaca
5.
Am Nat ; 199(5): 666-678, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472022

RESUMO

AbstractTraits often contribute to multiple functions, complicating our understanding of the selective pressures that influence trait evolution. In the Chihuahuan Desert, predation is thought to be the primary driver of cryptic light coloration in three White Sands lizard species relative to the darker coloration of populations on adjacent dark soils. However, coloration also influences radiation absorption and thus animal body temperatures. We combined comparative physiological experiments and biophysical models to test for thermal consequences of evolving different color morphs in White Sands across the three species. While light and dark morphs have not evolved different physiological heat limits within species, differences in radiation absorption between morphs lead to body temperature differences that impact relative overheating risk and activity patterns. Moreover, for all three species, an idealized morph that matches the White Sands substrate would have considerably less activity time, by approximately 1 month, than existing light morphs. Overall, there are both benefits and costs to greater substrate matching, the balance of which may prevent the evolution of optimal crypsis. Our work highlights the importance of color in dictating thermal performance and the complexity inherent in understanding the evolution of coloration.


Assuntos
Lagartos , Animais , Temperatura Corporal , Cor , Análise Custo-Benefício , Pigmentação/fisiologia , Comportamento Predatório
6.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424976

RESUMO

Heat tolerance plasticity is predicted to be an important buffer against global warming. Nonetheless, basal heat tolerance often correlates negatively with tolerance plasticity ('trade-off hypothesis'), a constraint that could limit plasticity benefits. We tested the trade-off hypothesis at the individual level with respect to heat hardening in two lizard species, Anolis carolinensis and Anolis sagrei. Heat hardening is a rapid increase in heat tolerance after heat shock that is rarely measured in reptiles but is generally considered to be a first line of physiological defense against heat. We also employed a biophysical model of operative habitat temperatures to estimate the performance consequences of hardening under ecologically relevant conditions. Anolis carolinensis hardened by 2 h post-heat shock and maintained hardening for several hours. However, A. sagrei did not harden. Biophysical models showed that hardening in A. carolinensis reduces their overheating risk in the field. Therefore, while not all lizards heat harden, hardening has benefits for species that can. We initially found a negative relationship between basal tolerance and hardening within both species, consistent with the trade-off hypothesis. However, permutation analyses showed that the apparent trade-offs could not be differentiated from statistical artifact. We found the same result when we re-analyzed published data supporting the trade-off hypothesis in another lizard species. Our results show that false positives may be common when testing the trade-off hypothesis. Statistical approaches that account for this are critical to ensure that the hypothesis, which has broad implications for thermal adaptation and responses to warming, is assessed appropriately.


Assuntos
Lagartos , Termotolerância , Aclimatação , Animais , Aquecimento Global , Temperatura
7.
J Exp Biol ; 224(Pt 7)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33653724

RESUMO

Heat tolerance plasticity is predicted to be an important buffer against global warming. Nonetheless, basal heat tolerance often correlates negatively with tolerance plasticity ('trade-off hypothesis'), a constraint that could limit plasticity benefits. We tested the trade-off hypothesis at the individual level with respect to heat hardening in two lizard species, Anolis carolinensis and Anolis sagrei Heat hardening is a rapid increase in heat tolerance after heat shock that is rarely measured in reptiles but is generally considered to be a first line of physiological defense against heat. We also employed a biophysical model of operative habitat temperatures to estimate the performance consequences of hardening under ecologically relevant conditions. Anolis carolinensis hardened by 2 h post-heat shock and maintained hardening for several hours. However, A. sagrei did not harden. Biophysical models showed that hardening in A. carolinensis reduces their overheating risk in the field. Therefore, while not all lizards heat harden, hardening has benefits for species that can. We initially found a negative relationship between basal tolerance and hardening within both species, consistent with the trade-off hypothesis. However, permutation analyses showed that the apparent trade-offs could not be differentiated from statistical artifact. We found the same result when we re-analyzed published data supporting the trade-off hypothesis in another lizard species. Our results show that false positives may be common when testing the trade-off hypothesis. Statistical approaches that account for this are critical to ensure that the hypothesis, which has broad implications for thermal adaptation and responses to warming, is assessed appropriately.


Assuntos
Lagartos , Termotolerância , Aclimatação , Animais , Aquecimento Global , Temperatura
8.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32591376

RESUMO

Vertebrates harbor trillions of microorganisms in the gut, collectively termed the gut microbiota, which affect a wide range of host functions. Recent experiments in lab-reared vertebrates have shown that changes in environmental temperature can induce shifts in the gut microbiota, and in some cases these shifts have been shown to affect host thermal physiology. However, there is a lack of information about the effects of temperature on the gut microbiota of wild-caught vertebrates. Moreover, in ectotherms, which are particularly vulnerable to changing temperature regimens, the extent to which microbiota composition is shaped by temperature and associated with host thermal tolerance has not been investigated. To address these issues, we monitored the gut microbiota composition of wild-caught western fence lizards (Sceloporus occidentalis) experimentally exposed to a cool-to-warm temperature transition. Comparing experimentally exposed and control lizards indicated that warm temperatures altered and destabilized the composition of the S. occidentalis gut microbiota. Warming drove a significant reduction in the relative abundances of a clade of Firmicutes, a significant increase in the rate of compositional turnover in the gut microbiota within individual lizards, and increases in the abundances of bacteria from predicted pathogenic clades. In addition, the composition of the microbiota was significantly associated with the thermal tolerance of lizards measured at the end of the experiment. These results suggest that temperature can alter the lizard gut microbiota, with potential implications for the physiological performance and fitness of natural populations.IMPORTANCE Gut microbial communities affect their animal hosts in numerous ways, motivating investigations of the factors that shape the gut microbiota and the consequences of gut microbiota variation for host traits. In this study, we tested the effects of increases in environmental temperatures on the gut microbiota of fence lizards, a vertebrate ectotherm threatened by warming climates. By monitoring lizards and their gut microbes during an experimental temperature treatment, we showed that the warming altered and destabilized the lizard gut microbiota. Moreover, measuring thermal performance of lizard hosts at the end of the experiment indicated that the composition of the gut microbiota was associated with host thermal tolerance. These results indicate that warming temperatures can alter the gut microbiota of vertebrate ectotherms and suggest relationships between variation in the gut microbiota and the thermal physiology of natural host populations.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lagartos/microbiologia , Lagartos/fisiologia , Termotolerância , Animais , Bactérias/classificação , California , Feminino , Masculino , Temperatura
9.
Biol Lett ; 16(1): 20190716, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937216

RESUMO

Extreme heat events are becoming more common as a result of anthropogenic global change. Developmental plasticity in physiological thermal limits could help mitigate the consequences of thermal extremes, but data on the effects of early temperature exposure on thermal limits later in life are rare, especially for vertebrate ectotherms. We conducted an experiment that to our knowledge is the first to isolate the effect of egg (i.e. embryonic) thermal conditions on adult heat tolerance in a reptile. Eggs of the lizard Anolis sagrei were incubated under one of three fluctuating thermal regimes that mimicked natural nest environments and differed in mean and maximum temperatures. After emergence, all hatchlings were raised under common garden conditions until reproductive maturity, at which point heat tolerance was measured. Egg mortality was highest in the warmest treatment, and hatchlings from the warmest treatment tended to have greater mortality than those from the cooler treatments. Despite evidence that incubation temperatures were stressful, we found no evidence that incubation treatment influenced adult heat tolerance. Our results are consistent with a low capacity for organisms to increase their physiological heat tolerance via plasticity, and emphasize the importance of behavioural and evolutionary processes as mechanisms of resilience to extreme heat.


Assuntos
Lagartos , Termotolerância , Animais , Evolução Biológica , Meio Ambiente , Temperatura Alta , Temperatura
10.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669895

RESUMO

Elucidating how ecological and evolutionary mechanisms interact to produce and maintain biodiversity is a fundamental problem in evolutionary ecology. Here, we focus on how physiological evolution affects performance and species coexistence along the thermal niche axis in replicated radiations of Anolis lizards best known for resource partitioning based on morphological divergence. We find repeated divergence in thermal physiology within these radiations, and that this divergence significantly affects performance within natural thermal environments. Morphologically similar species that co-occur invariably differ in their thermal physiology, providing evidence that physiological divergence facilitates species coexistence within anole communities. Despite repeated divergence, phylogenetic comparative analyses indicate that physiological traits have evolved more slowly than key morphological traits related to the structural niche. Phylogenetic analyses also reveal that physiological divergence is correlated with divergence in broad-scale habitat climatic features commonly used to estimate thermal niche evolution, but that the latter incompletely predicts variation in the former. We provide comprehensive evidence for repeated adaptive evolution of physiological divergence within Anolis adaptive radiations, including the complementary roles of physiological and morphological divergence in promoting community-level diversity. We recommend greater integration of performance-based traits into analyses of climatic niche evolution, as they facilitate a more complete understanding of the phenotypic and ecological consequences of climatic divergence.


Assuntos
Evolução Biológica , Ecossistema , Lagartos/fisiologia , Animais , Jamaica , Filogenia , Porto Rico , Temperatura , Ilhas Virgens Americanas
11.
Ecol Lett ; 19(2): 111-120, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26647860

RESUMO

Activity budgets influence the expression of life history traits as well as population dynamics. For ectotherms, a major constraint on activity is environmental temperature. Nonetheless, we currently lack a comprehensive conceptual framework for understanding thermal constraints on activity, which hinders our ability to rigorously apply activity data to answer ecological and evolutionary questions. Here, we integrate multiple aspects of temperature-dependent activity into a single unified framework that has general applicability. We also provide examples of the implementation of this framework to address fundamental questions in ecology relating to climate change vulnerability and species' distributions using empirical data from a tropical lizard.

12.
Am Nat ; 185(5): 653-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25905508

RESUMO

Thermal activity constraints play a major role in many aspects of ectotherm ecology, including vulnerability to climate change. Therefore, there is strong interest in developing general models of the temperature dependence of activity. Several models have been put forth (explicitly or implicitly) to describe such constraints; nonetheless, tests of the predictive abilities of these models are lacking. In addition, most models consider activity as a threshold trait instead of considering continuous changes in the vigor of activity among individuals. Using field data for a tropical lizard (Anolis cristatellus) and simulations parameterized by our observations, we determine how well various threshold and continuous-activity models match observed activity patterns. No models accurately predicted activity under all of the thermal conditions that we considered. In addition, simulations showed that the performance of threshold models decreased as temperatures increased, which is a troubling finding given the threat of global climate change. We also find that activity rates are more sensitive to temperature than are the physiological traits often used as a proxy for fitness. We present a model of thermal constraint on activity that integrates aspects of both the threshold model and the continuous-activity model, the general features of which are supported by activity data from other species. Overall, our results demonstrate that greater attention should be given to fine-scale patterns of thermal constraint on activity.


Assuntos
Lagartos/fisiologia , Animais , Mudança Climática , Ecossistema , Modelos Biológicos , Movimento , Temperatura
13.
Proc Biol Sci ; 282(1808): 20150401, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25994676

RESUMO

Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.


Assuntos
Aclimatação , Evolução Biológica , Mudança Climática , Crustáceos/fisiologia , Insetos/fisiologia , Vertebrados/fisiologia , Animais , Regulação da Temperatura Corporal , Temperatura Baixa , Aquecimento Global , Temperatura Alta
14.
Oecologia ; 171(2): 449-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22865092

RESUMO

Encroachment of woody vegetation into grasslands is a widespread phenomenon that alters plant community composition and ecosystem function. Woody encroachment is often the result of fire suppression, but it may also be related to changes in resource availability associated with global environmental change. We tested the relative strength of three important global change factors (CO(2) enrichment, nitrogen deposition, and loss of herbaceous plant diversity) on the first 3 years of bur oak (Quercus macrocarpa) seedling performance in a field experiment in central Minnesota, USA. We found that loss of plant diversity decreased initial oak survival but increased overall oak growth. Conversely, elevated CO(2) increased initial oak seedling survival and reduced overall growth, especially at low levels of diversity. Nitrogen deposition surprisingly had no net effect on survival or growth. The magnitude of these effects indicates that long-term woody encroachment trends may be most strongly associated with those few individuals that survive, but grow much larger in lower diversity patches. Further, while the CO(2) results and the species richness results appear to describe opposing trends, this is due only to the fact that the natural drivers are moving in opposite directions (decreasing species richness and increasing CO(2)). Interestingly, the mechanisms that underlie both patterns are very similar, increased CO(2) and increased species richness both increase herbaceous biomass which (1) increases belowground competition for resources and (2) increases facilitation of early plant survival under a more diverse plant canopy; in other words, both competition and facilitation help determine community composition in these grasslands.


Assuntos
Biodiversidade , Dióxido de Carbono/metabolismo , Quercus/crescimento & desenvolvimento , Ecossistema , Minnesota , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional
15.
Am Nat ; 180(6): 815-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23149405

RESUMO

The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CT(min)]) and upper (critical thermal maximum [CT(max)]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CT(max) did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CT(min) were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CT(min) measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed.


Assuntos
Aclimatação , Evolução Biológica , Lagartos/fisiologia , Animais , Temperatura Baixa , Florida , Espécies Introduzidas , Lagartos/genética , Porto Rico , Seleção Genética
16.
Front Physiol ; 13: 754830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399284

RESUMO

Ongoing anthropogenic climate change has increased attention on the ecological and evolutionary consequences of thermal variation. Most research in this field has focused on the physiology and behavior of diploid whole organisms. The thermal performance of haploid gamete stages directly tied to reproductive success has received comparatively little attention, especially in the context of the evolutionary ecology of wild (i.e., not domesticated) organisms. Here, we review evidence for the effects of temperature on sperm phenotypes, emphasizing data from wild organisms whenever possible. We find that temperature effects on sperm are pervasive, and that above normal temperatures in particular are detrimental. That said, there is evidence that sperm traits can evolve adaptively in response to temperature change, and that adaptive phenotypic plasticity in sperm traits is also possible. We place results in the context of thermal performance curves, and encourage this framework to be used as a guide for experimental design to maximize ecological relevance as well as the comparability of results across studies. We also highlight gaps in our understanding of sperm thermal performance that require attention to more fully understand thermal adaptation and the consequences of global change.

17.
Evolution ; 76(9): 1942-1952, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851667

RESUMO

Genetic assimilation is a process that leads to reduced phenotypic plasticity during adaptation to novel conditions, a potentially important phenomenon under global environmental change. Null expectations when testing for genetic assimilation, however, are not always clear. For instance, the statistical artifact of regression to the mean could bias us toward detecting genetic assimilation when it has not occurred. Likewise, the specific mechanism underlying plasticity expression may affect null expectations under neutral evolution. We used macroevolutionary numerical simulations to examine both of these important issues and their interaction, varying whether plasticity evolves, the evolutionary mechanism, trait measurement error, and experimental design. We also modified an existing reaction norm correction method to account for phylogenetic nonindependence. We found (1) regression to the mean is pervasive and can generate spurious support for genetic assimilation; (2) experimental design and post hoc correction can minimize this spurious effect; and (3) neutral evolution can produce patterns consistent with genetic assimilation without constraint or selection, depending on the mechanism of plasticity expression. Additionally, we reanalyzed published macroevolutionary data supporting genetic assimilation, and found that support was reduced after proper correction. Considerable caution is thus required whenever investigating genetic assimilation and reaction norm evolution at macroevolutionary scales.


Assuntos
Evolução Biológica , Seleção Genética , Deriva Genética , Fenótipo , Filogenia
18.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638605

RESUMO

Urbanization is rapidly altering Earth's environments, demanding investigation of the impacts on resident wildlife. Here, we show that urban populations of coyotes (Canis latrans), crested anole lizards (Anolis cristatellus), and white-crowned sparrows (Zonotrichia leucophrys) acquire gut microbiota constituents found in humans, including gut bacterial lineages associated with urbanization in humans. Comparisons of urban and rural wildlife and human populations revealed significant convergence of gut microbiota among urban populations relative to rural populations. All bacterial lineages overrepresented in urban wildlife relative to rural wildlife and differentially abundant between urban and rural humans were also overrepresented in urban humans relative to rural humans. Remarkably, the bacterial lineage most overrepresented in urban anoles was a Bacteroides sequence variant that was also the most significantly overrepresented in urban human populations. These results indicate parallel effects of urbanization on human and wildlife gut microbiota and suggest spillover of bacteria from humans into wildlife in cities.


Vertebrate species, such as reptiles, birds or mammals, harbour distinct communities of microbes in their digestive systems. These miniature ecosystems ­ also known as microbiomes ­ are unique to each owner and species, reflecting their diverse lifestyles and evolutionary history. Urbanisation can disrupt these delicate intestinal communities. Humans and other animals living in cities have different gut microbes to their counterparts living in rural areas. And captive species in homes and zoos often acquire human gut bacteria in their digestive systems, which can lead to health problems in these animals. So far, it has been unclear whether such a humanization of gut bacteria also affects wild animals living in and around cities. To investigate this further, Dillard et al. compared the gut microbes of wild reptiles, birds, and mammals living in close contact with humans in North America, such as coyotes, crested anole lizards and white-crowned sparrows. DNA sequencing showed that in urban environments, the composition of gut bacteria living in all three wildlife species resembled the ones in humans. The types of bacteria overrepresented in the guts of urban humans were also overrepresented in urban wildlife. This suggests that urbanization can affect the composition of gut bacteria in wildlife species by disrupting or replacing portions of their microbiome. The reason for this pattern is unclear. It is possible that humans might be sharing their gut microbes directly with city animals, or that a human-like diet is causing the change. Given the role that gut microbes play in health and disease, it is important to find out whether these changes cause the animals any harm.


Assuntos
Microbioma Gastrointestinal , Lagartos , Animais , Animais Selvagens , Bactérias/genética , Cidades , Humanos , Urbanização
19.
Front Physiol ; 13: 796125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350692

RESUMO

Thermal extremes alter population processes, which can result in part from temperature-induced movement at different spatial and temporal scales. Thermal thresholds for animal movement likely change based on underlying thermal physiology and life-history stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels in the high-intertidal zone at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats, and the extent to which crabs move in response to temperature, remain unknown. Moreover, the influence of reproductive status on these thresholds is rarely investigated. We integrated demographic, molecular, behavioral, and physiological measurements to determine if behavioral thermal limits varied due to reproductive state. Demographic data showed a trend for gravid, egg bearing, crabs to appear more often under rocks in the cooler intertidal zone where crab density is highest. In situ expression of 31 genes related to stress, metabolism, and growth in the field differed significantly based on intertidal elevation, with mid-intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg) earlier in the season. Furthermore, VG protein levels were shown to increase with density for female hemolymph. Testing for temperatures that elicit movement revealed that gravid females engage in heat avoidance behavior at lower temperatures (i.e., have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax was positively correlated with the temperature of peak firing rate for distal afferent nerve fibers in the walking leg, a physiological relationship that could correspond to the mechanistic underpinning for temperature dependent movement. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies in response to temperature to maximize survival and reproduction. Interactions between fine-scale temperature variation and reproductive biology can have important consequences for the ecology of species, and is likely to influence how populations respond to ongoing climate change.

20.
Mol Ecol Resour ; 22(1): 122-136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34174174

RESUMO

Vertebrates harbour gut microbial communities containing hundreds of bacterial species, most of which have never been cultivated or isolated in the laboratory. The lack of cultured representatives from vertebrate gut microbiotas limits the description and experimental interrogation of these communities. Here, we show that representatives from >50% of the bacterial genera detected by culture-independent sequencing in the gut microbiotas of fence lizards, house mice, chimpanzees, and humans were recovered in mixed cultures from frozen faecal samples plated on a panel of nine media under a single growth condition. In addition, culturing captured >100 rare bacterial genera overlooked by culture-independent sequencing, more than doubling the total number of bacterial sequence variants detected. Our approach recovered representatives from 23 previously uncultured candidate bacterial genera, 12 of which were not detected by culture-independent sequencing. Results identified strategies for both indiscriminate and selective culturing of the gut microbiota that were reproducible across vertebrate species. Isolation followed by whole-genome sequencing of 161 bacterial colonies from wild chimpanzees enabled the discovery of candidate novel species closely related to the opportunistic pathogens of humans Clostridium difficile and Hungatella hathewayi. This study establishes culturing methods that improve inventories and facilitate isolation of gut microbiota constituents from a wide diversity of vertebrate species.


Assuntos
Microbioma Gastrointestinal , Lagartos , Animais , Bactérias/genética , Camundongos , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA