Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 284: 116878, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142116

RESUMO

BACKGROUND: 2-ethylhexyldiphenyl phosphate (EHDPP) was used widespread in recent years and it was reported to impair reproductive behaviors and decrease fertility in male Japanese medaka. However, whether EHDPP causes spermatogenesis disturbance remains uncertain. OBJECTIVES: We aimed to study the male reproductive toxicity of EHDPP and its related mechanism. METHODS: Human spermatocyte cell line GC-2 was treated with 10 µM, 50 µM or 100 µM EHDPP for 24 h. Male CD-1 mice aged 6 weeks were given 1, 10, or 100 mg/kg/d EHDPP daily for 42 days and then euthanized to detect sperm count and motility. Proliferation, apoptosis, oxidative stress was detected in mice and cell lines. Metabolome and transcriptome were used to detect the related mechanism. Finally, anti-oxidative reagent N-Acetylcysteine was used to detect whether it could reverse the side-effect of EHDPP both in vivo and in vitro. RESULTS: Our results showed that EHDPP inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Metabolome and transcriptome showed that nucleotide metabolism disturbance and DNA damage was potentially involved in EHDPP-induced reproductive toxicity. Finally, we found that excessive ROS production caused DNA damage and mitochondrial dysfunction; NAC supplement reversed the side effects of EHDPP such as DNA damage, proliferation inhibition, apoptosis and decline in sperm motility. CONCLUSION: ROS-evoked DNA damage and nucleotide metabolism disturbance mediates EHDPP-induced germ cell proliferation inhibition and apoptosis, which finally induced decline of sperm motility.

2.
Ecotoxicol Environ Saf ; 271: 116000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266359

RESUMO

The decline in male fertility caused by environmental pollutants has attracted worldwide attention nowadays. Tris(2-chloroisopropyl) phosphate (TCPP) is a chlorine-containing organophosphorus flame retardant applied in many consumer products and has multiple side effects on health. However, whether TCPP impairs spermatogenesis remains unclear. In this study, we found that TCPP reduced the sperm motility and blastocyst formation, inhibited proliferation and induced apoptosis in mice testes and spermatocyte cell line GC-2. Moreover, TCPP induced imbalance of oxidant and anti-oxidant, DNA damage and mitochondrial dysfunction, thus induced abnormal spermatogenesis. In this process, p53 signaling pathway was activated and N-acetylcysteine treatment partially alleviated the side effects of TCPP, including decrease of sperm motility, activation of p53 signaling pathway and DNA damage. Finally, our study verified that TCPP elevated reactive oxygen species (ROS), decreased mitochondrial membrane potential and induced apoptosis in human semen samples. Overall, ROS mediated TCPP-induced germ cell proliferation inhibition and apoptosis, which finally led to the decline of sperm motility.


Assuntos
Retardadores de Chama , Fosfatos , Masculino , Camundongos , Humanos , Animais , Fosfatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Organofosfatos/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Compostos Organofosforados , Retardadores de Chama/toxicidade , Motilidade dos Espermatozoides , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA