Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(1): 114-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34227906

RESUMO

Bioactive substances derived from natural products are valued for effective health-related activities. As extremely important component of plants, animal cell membrane and microbes cytoderm, polysaccharides have been applied as medications, foods and cosmetics stemming from their prominent biological functions and minor side-effects. Recent studies indicate that polysaccharides exert biological effects also through epigenetic mechanism. Through the intervention of DNA methylation, histone modification, and non-coding RNA, polysaccharides participatate in regulation of immunity/inflammation, glucose and lipid metabolism, antioxidant damage and anti-tumor, which presents novel mechanism of polysaccharide exerting various functions. In this review, the latest advances in the biological functions of dietary polysaccharides via epigenetic regulations were comprehensively summarized and discussed. From the view point of epigenetic regulation, investigating the relationship between polysaccharides and biological effects will enhance our understandings of polysaccharides and also means huge breakthrough of molecular mechanism in the polysaccharide research fields. The paper will provide important reference to these investigators of polysaccharide research and expand the applications of dietary polysaccharides in the functional food developments.


Assuntos
Produtos Biológicos , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Epigênese Genética , Estudos Prospectivos , Antioxidantes , Carboidratos da Dieta
2.
Crit Rev Food Sci Nutr ; 63(22): 5967-5983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35068283

RESUMO

Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.


Assuntos
Microbioma Gastrointestinal , Lignanas , Humanos , NF-kappa B/metabolismo , Lignanas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816298

RESUMO

The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials. Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.

4.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315046

RESUMO

Quinoa is known to be a rich source of nutrients and bioactive components. Quinoa bran, used mainly as animal feed in processing by-products, is also a potential source of bioactive ingredients being conducive to human health. The importance of nutrition and function of quinoa seed has been discussed in many studies, but the bioactive properties of quinoa bran often are overlooked. This review systemically summarized the progress in bioactive components, extraction, and functional investigations of quinoa bran. It suggests that chemically assisted electronic fractionation could be used to extract albumin from quinoa bran. Ultrasound-assisted extraction method is a very useful method for extracting phenolic acids, triterpene saponins, and flavonoids from quinoa bran. Based on in vitro and in vivo studies for biological activities, quinoa bran extract exhibits a wide range of beneficial properties, including anti-oxidant, anti-diabetes, anti-inflammation, anti-bacterial and anti-cancer functions. However, human experiments and action mechanisms need to investigate. Further exploring quinoa bran will promote its applications in functional foods, pharmaceuticals, and poultry feed in the future.

5.
Phytother Res ; 36(11): 4024-4040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36227024

RESUMO

Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/ß-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/ß-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica
6.
Soft Matter ; 17(15): 4191-4194, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881126

RESUMO

We optimize the performance of an elastic actuator consisting of an active core in a host which performs mechanical work on a load. The system, initially with localized elastic energy in the active component, relaxes and distributes energy to the rest of the system. Using the linearized Mooney-Rivlin hyperelastic model in a cylindrical geometry and assuming viscous relaxation, we show that the value of Young's modulus of the impedance matching host which maximizes the energy transfer from the active component to the load is the geometric mean of Young's moduli of the active component and the elastic load. This is similar to the classic results for impedance matching for maximizing the transmittance of light propagating through dielectric media.

7.
Ecotoxicol Environ Saf ; 205: 111146, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827965

RESUMO

Cadmium (Cd) exposure in environment is associated with development of esophageal cancer. However, the mechanisms of Cd-induced carcinogenesis are still not been fully cleared, and the present study aimed to explore the possible etiological mechanism of Cd-induced esophageal cancer. Human esophageal epithelial cell lines (HET-1A and KYSE450) were treated with CdCl2 at 0.05 mg/l for 12, 24 h, and the then the apoptosis were detected using flow cytometry with annexin-V-FITC/PI staining. Results showed that apoptosis of treatment groups was significantly inhibited, and decreased reactive oxygen species (ROS) production played a key role in the inhibitory effects by upregulating Bcl-2 and downregulating Caspase-3/9. The relief of oxidative stress during Cd exposure was actively promoted by the increased nicotinamide adenine dinucleotide phosphoric acid and glutathione levels. To investigate the causes of enhanced intracellular antioxidant capacity, the activity of pyruvate kinase (PK), a key enzyme of glycolysis, was detected. Our results showed that PK activity was inhibited, suggesting that glycolysis process was blocked which promoted more intermediate metabolites of glycolysis to be used for reduced nicotinamide adenine dinucleotide phosphoric acid (NADPH) or other antioxidants synthesis. PK activity was closely correlated with phosphorylation of pyruvate kinase M2 (PKM2), and a highly negative correlation (correlation coefficients: -0.835, p < 0.05) between them was found. Western blotting showed the overphosphorylation of PKM2 in Cd-exposed cells, resulting from increased expression of cyclin-dependent kinases 6 (CDK6). These results suggested a possible mechanism of carcinogenic: Cd-induced upregulation of CDK6 in esophageal cell lines caused PKM2 overphosphorylation inhibiting PK activity, thereby shunting glucose-derived carbon into the pentose phosphate pathway and promoting the production of NADPH and reduced glutathione (GSH) to neutralize ROS, which finally results in the inhibited apoptosis.


Assuntos
Cádmio/toxicidade , Quinase 6 Dependente de Ciclina/metabolismo , Apoptose/efeitos dos fármacos , Cádmio/metabolismo , Caspase 3 , Neoplasias Esofágicas , Glicólise/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2 , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
8.
Appl Opt ; 58(4): 739-743, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874119

RESUMO

We demonstrate a small optical bench footprint laser assembly based on the small pulsed Nd:YAG laser head SSY-1 for pumping cholesteric liquid crystal (CLC) lasers and illustrate its performance using low molecular weight CLC samples doped with the fluorescent dye PM597. A low lasing threshold, narrow laser line, and far-field interference patterns of the CLC laser were observed using the SSY-1-based laser assembly as the pump. The emission characteristics of the CLC laser are similar to those observed with comparable CLC materials pumped by an order of magnitude physically larger and many orders of magnitude more expensive commercial Nd:YAG laser systems. The small footprint CLC laser demonstrated in this work provides an opportunity for significant size and cost reduction of CLC lasers and fostering their practical applications.

9.
Sensors (Basel) ; 20(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861439

RESUMO

Gating or threshold selection is very important in analyzing data from a microflow cytometer, which is especially critical in analyzing weak signals from particles/cells with small sizes. It has been reported that using the amplitude gating alone may result in false positive events in analyzing data with a poor signal-to-noise ratio. Transit time (τ) can be set as a gating threshold along with side-scattered light or fluorescent light signals in the detection of particles/cells using a microflow cytometer. In this study, transit time of microspheres was studied systematically when the microspheres passed through a laser beam in a microflow cytometer and side-scattered light was detected. A clear linear relationship between the inverse of the average transit time and total flow rate was found. Transit time was used as another gate (other than the amplitude of side-scattering signals) to distinguish real scattering signals from noise. It was shown that the relative difference of the measured microsphere concentration can be reduced significantly from the range of 3.43%-8.77% to the range of 8.42%-111.76% by employing both amplitude and transit time as gates in analysis of collected scattering data. By using optimized transit time and amplitude gate thresholds, a good correlation with the traditional hemocytometer-based particle counting was achieved (R2 > 0.94). The obtained results suggest that the transit time could be used as another gate together with the amplitude gate to improve measurement accuracy of particle/cell concentration for microfluidic devices.

10.
Int J Mol Sci ; 19(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287730

RESUMO

δ-Tocotrienol, an important component of vitamin E, has been reported to possess some physiological functions, such as anticancer and anti-inflammation, however their molecular mechanisms are not clear. In this study, δ-tocotrienol was isolated and purified from rice bran. The anti-inflammatory effect and mechanism of δ-tocotrienol against lipopolysaccharides (LPS) activated pro-inflammatory mediator expressions in RAW264.7 cells were investigated. Results showed that δ-tocotrienol significantly inhibited LPS-stimulated nitric oxide (NO) and proinflammatory cytokine (TNF-α, IFN-γ, IL-1ß and IL-6) production and blocked the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 (ERK1/2). δ-Tocotrienol repressed the transcriptional activations and translocations of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), which were closely related with downregulated cytokine expressions. Meanwhile, δ-tocotrienol also affected the PPAR signal pathway and exerted an anti-inflammatory effect. Taken together, our data showed that δ-tocotrienol inhibited inflammation via mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR) signalings in LPS-stimulated macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Oryza/química , Vitamina E/análogos & derivados , Animais , Linhagem Celular , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Vitamina E/análise , Vitamina E/farmacologia
11.
Electrophoresis ; 36(2): 298-304, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348197

RESUMO

Counting of Escherichia coli DH5α-cell suspensions in PBS is performed using a microflow cytometer based on a photonic-microfluidic integrated device. Side-scattered light signals are used to count the E. coli cells. A detection efficiency of 92% is achieved when compared with the expected count from a hemocytometer. The detection efficiency is correlated to the ratio of sample to sheath flow rates. It is demonstrated that E. coli can be easily distinguished from beads of similar sizes (2-4 µm) as their scattering intensities are different.


Assuntos
Escherichia coli , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Técnicas Analíticas Microfluídicas , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Desenho de Equipamento , Poliestirenos
12.
Inorg Chem ; 54(4): 1627-33, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25594823

RESUMO

Here we demonstrate a novel and facile strategy of highly luminescent water-soluble Zn-doped AgIn5S8 (ZAIS) nanocrystals and ZAIS/ZnS core/shell structures, which were based on hydrothermal reaction between the acetate salts of the corresponding metals and sulfide precursor in the presence of l-cysteine at 110 °C in a Teflon-lined autoclave. The photoluminescent (PL) emission wavelength can be conveniently tuned from 560 to 650 nm by tailoring the stoichiometric ratio of [Ag]/[Zn]. The as prepared nanocrystals were characterized systematically and exhibit long PL lifetimes more than 100 ns. The influence of experimental conditions, including concentration of l-cysteine and reaction temperature, was investigated. In addition, we performed a coating procedure with the ZnS shell outside the ZAIS core and showed excellent PL quantum yields up to 35%. The in vitro experiment exhibited quite low cytotoxicity and marvelous biocompatibility, revealing their promising prospect in bioscience. Furthermore, the obtained ZAIS/ZnS nanocompounds (NCs) were covalently conjugated to alpha-fetoprotein antibodies and targeted fluorescent imaging for hepatocellular carcinoma cells was realized.


Assuntos
Carcinoma Hepatocelular/patologia , Diagnóstico por Imagem , Corantes Fluorescentes , Neoplasias Hepáticas/patologia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Índio/química , Prata/química , Solubilidade , Enxofre/química , Temperatura , Água/química , Zinco/química
13.
Transl Oncol ; 46: 102026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850800

RESUMO

Thymosin beta 10 (TMSB10) overexpression is a general characteristic in human carcinogenesis. It is involved in the malignant process of generating multiple cancers. However, there are only a few reports about TMSB10 in colorectal cancer (CRC) and the mechanism of its carcinogenetic effect is still poorly understood. The present study intends to clarify the biological roles and carcinogenic mechanism of TMSB10 in CRC and to explore the possibility whether TMSB10 might be useful as a non-invasive serum tumor biomarker in detecting CRC. Immunohistochemical results showed that TMSB10 protein expression in CRC tissues was generally higher than that in adjacent tissues, and the TMSB10 contents in serum of CRC patients was significantly elevated compared to that of healthy controls. Knockdown-TMSB10 increased apoptosis and induced S-cell cycle arrest, and finally inhibited cell proliferation in vitro and in vivo. Transcriptome sequencing and western blotting analysis revealed that knockdown-TMSB10 increased phosphorylation of p38 and activated the p38 pathway that blocked cell cycle and promoted apoptosis. Taken together, our study indicated that TMSB10 could serve as a minimally invasive serum tumor marker in detecting CRC. At the same time it demonstrates an effective regulatory capacity of TMSB10 on cell proliferation of CRC, suggesting that TMSB10 and downstream effector molecules regulated by TMSB10 could further be applied as an appealing target in clinical post-surgery chemotherapy.

14.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474822

RESUMO

Alcoholic liver disease (ALD) is primarily caused by long-term excessive alcohol consumption. Cyanidin-3-O-glucoside (C3G) is a widely occurring natural anthocyanin with multiple biological activities. This study aims to investigate the effects of C3G isolated from black rice on ALD and explore the potential mechanism. C57BL/6J mice (male) were fed with standard diet (CON) and Lieber-DeCarli liquid-fed (Eth) or supplemented with a 100 mg/kg/d C3G Diet (Eth-C3G), respectively. Our results showed that C3G could effectively ameliorate the pathological structure and liver function, and also inhibited the accumulation of liver lipids. C3G supplementation could partially alleviate the injury of intestinal barrier in the alcohol-induced mice. C3G supplementation could increase the abundance of Norank_f_Muribaculaceae, meanwhile, the abundances of Bacteroides, Blautia, Collinsella, Escherichia-Shigella, Enterococcus, Prevotella, [Ruminococcus]_gnavus_group, Methylobacterium-Methylorubrum, Romboutsia, Streptococcus, Bilophila, were decreased. Spearman's correlation analysis showed that 12 distinct genera were correlated with blood lipid levels. Non-targeted metabolic analyses of cecal contents showed that C3G supplementation could affect the composition of intestinal metabolites, particularly bile acids. In conclusion, C3G can attenuate alcohol-induced liver injury by modulating the gut microbiota and metabolites, suggesting its potential as a functional food ingredient against alcoholic liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Masculino , Animais , Antocianinas/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Glucosídeos/farmacologia
15.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241590

RESUMO

The eutrophication of aquatic ecosystems caused by rapid human urbanization has led to an increased production of potentially hazardous bacterial populations, known as blooms. One of the most notorious forms of these aquatic blooms are cyanobacteria, which in sufficiently large quantities can pose a hazard to human health through ingestion or prolonged exposure. Currently, one of the greatest difficulties in regulating and monitoring these potential hazards is the early detection of cyanobacterial blooms, in real time. Therefore, this paper presents an integrated microflow cytometry platform for label-free phycocyanin fluorescence detection, which can be used for the rapid quantification of low-level cyanobacteria and provide early warning alerts for potential harmful cyanobacterial blooms. An automated cyanobacterial concentration and recovery system (ACCRS) was developed and optimized to reduce the assay volume, from 1000 mL to 1 mL, to act as a pre-concentrator and subsequently enhance the detection limit. The microflow cytometry platform utilizes an on-chip laser-facilitated detection to measure the in vivo fluorescence emitted from each individual cyanobacterial cell, as opposed to measuring overall fluorescence of the whole sample, potentially decreasing the detection limit. By applying transit time and amplitude thresholds, the proposed cyanobacteria detection method was verified by the traditional cell counting technique using a hemocytometer with an R2 value of 0.993. It was shown that the limit of quantification of this microflow cytometry platform can be as low as 5 cells/mL for Microcystis aeruginosa, 400-fold lower than the Alert Level 1 (2000 cells/mL) set by the World Health Organization (WHO). Furthermore, the decreased detection limit may facilitate the future characterization of cyanobacterial bloom formation to better provide authorities with ample time to take the appropriate actions to mitigate human risk from these potentially hazardous blooms.

16.
J Agric Food Chem ; 71(1): 96-109, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541706

RESUMO

Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.


Assuntos
Neoplasias , Polissacarídeos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico
17.
Int J Biol Macromol ; 230: 123163, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623622

RESUMO

Phellinus linteus (P. linteus) is a famous Chinese medicine and has a long history in China. In recent years, P. linteus polysaccharides (PLPs) have attracted extensive attention because of their biological activities such as anti-bacteria, anti-aging, anti-oxidation, anti-inflammation, anti-tumor, hepatoprotective effect and hypoglycemic effect. In this review, we systemically summarized the advances in extractions, purifications and structural characterizations of PLPs, and also analyzed their biological functions and molecular mechanisms. Meanwhile, the structure-activity relationships of PLPs are closely related to their anti-oxidation and anti-tumor activities. So far, the applications of PLPs are still very limited, further exploring structure-activity relationships, biological functions and their mechanisms of PLPs will promote to develop functional foods.


Assuntos
Basidiomycota , Basidiomycota/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Anti-Inflamatórios , China
18.
ACS Sens ; 8(4): 1558-1567, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926840

RESUMO

Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.


Assuntos
COVID-19 , Purificação da Água , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Águas Residuárias , Oligonucleotídeos
19.
Foods ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230032

RESUMO

Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.

20.
Artigo em Inglês | MEDLINE | ID: mdl-35657939

RESUMO

Hybrid organic-inorganic composites based on organic photochromic crystals embedded in inorganic templates provide a new approach to photomechanical materials. Diarylethene (DAE) nanowire crystals grown in Al2O3 membranes have exhibited reversible photoinduced bending and lifting [Dong, X., Chem. Mater. 2019, 31, 1016-1022]. In this paper, the hybrid approach is extended to porous SiO2 membranes. Despite the different template material (SiO2 instead of Al2O3) and much larger channels (5 µm diameter instead of 0.2 µm diameter), similar photomechanical behavior is observed for this new class of organic-inorganic hybrid actuators. The ability to reuse individual glass templates across different DAE filling cycles allows us to show that the DAE filling step is crucial for determining the mechanical work done by the bending template. The bending curvature also depends quadratically on the template thickness, in good agreement with theory. The light-induced bending can be repeated for up to 150 cycles without loss of performance, suggesting good fatigue resistance. The results in this paper demonstrate that the hybrid organic-inorganic approach can be extended to other host materials and template geometries. They also suggest that optimizing the organic filling and template thickness could improve the work output by an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA