Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 851, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026211

RESUMO

BACKGROUND: Immune checkpoint inhibitors, such as anti-programmed cell death-1 (PD-1) and PD-1 ligand-1 (PD-L1) antibodies, have achieved breakthrough results in improving long-term survival rates in lung cancer. Although high levels of PD-L1 expression and tumor mutational burden have emerged as pivotal biomarkers, not all patients derive lasting benefits, and resistance to immune checkpoint blockade remains a prevalent issue. Comprehending the immunological intricacies of lung cancer is crucial for uncovering the mechanisms that govern responses and resistance to immunomodulatory treatments. This study aimed to explore the potential of peripheral immune markers in predicting treatment efficiency among lung cancer patients undergoing PD-1/PD-L1 checkpoint inhibitors. METHODS: This study enrolled 71 lung cancer patients undergoing PD-1/PD-L1 inhibitor therapy and 20 healthy controls. Immune cell subsets (CD4 + T cells, CD8 + T cells, B cells, NK cells, and NKT cells), phenotypic analysis of T cells and B cells, and PMA/Ionomycin-stimulated lymphocyte function assay were conducted. RESULTS: Lung cancer patients exhibited significant alterations in immune cell subsets, notably an increased percentage of Treg cells. Post-treatment, there were substantial increases in absolute numbers of CD3 + T cells, CD8 + T cells, and NKT cells, along with heightened HLA-DR expression on CD3 + T and CD8 + T cells. Comparison between complete remission and non-complete remission (NCR) groups showed higher Treg cell percentages and HLA-DR + CD4 + T cells in the NCR group. CONCLUSION: The study findings suggest potential predictive roles for immune cell subsets and phenotypes, particularly Treg cells, HLA-DR + CD4 + T cells, and naïve CD4 + T cells, in evaluating short-term PD-1/PD-L1 therapy efficacy for lung cancer patients. These insights offer valuable prospects for personalized treatment strategies and underscore the importance of immune profiling in lung cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Biomarcadores Tumorais , Adulto
2.
Adv Sci (Weinh) ; 10(27): e2301952, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37518836

RESUMO

The transition metal dichalcogenides, 2H-VX2 (X = S, Se, Te), are identified as two-dimensional second-order topological insulator (SOTI) with a ferromagnetic ground state by first-principles calculations. The 2H-VX2 (X = S, Se, Te) materials have a nontrivial band gap in two spin channels is found and exhibit topologically protected corner states with spin-polarization. These corner states only accommodate the quantized fractional charge (e/3). And the charge is bound at the corners of the nanodisk geometry 2H-VX2 (X = S, Se, Te) in real space. The corner states are robust against symmetry-breaking perturbations, which makes them more easily detectable in experiments. Further, it is demonstrated that the SOTI properties of 2H-VX2 (X = S, Se, Te) materials can be maintained in the presence of spin-orbit coupling and are stable against magnetization. Overall, the results reveal 2H-VX2 (X = S, Se, Te) as an ideal platform for the exploration of magnetic SOTI and suggest its great potential in experimental detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA