Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 23(14): e202200124, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478374

RESUMO

The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3 Sn and W3 Sn (n=0-3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N-N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3 Sn is generally higher than that of W3 Sn . In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N-N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3 Sn decreases because of the hindering effect of S atoms, while W3 S and W3 S2 have the highest reactivity among four W3 Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N-N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N-N bond activation, which is more significant in Nb3 Sn than in W3 Sn , leading to the higher reactivity of Nb3 Sn . The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).

2.
Chemphyschem ; 23(14): e202200431, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852157

RESUMO

The front cover artwork is provided by Prof. Xun-Lei Ding's group at North China Electric Power University (NCEPU). The image shows the cleavage of the triple bond of a dinitrogen molecule on trinuclear metal clusters with sulfide ligands, which is the critical step in nitrogen reduction reactions (NRR). Read the full text of the Research Article at 10.1002/cphc.202200124.

3.
Chemphyschem ; 23(3): e202100771, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34821022

RESUMO

Activation of N2 on anionic trimetallic V3-x Tax C4- (x=0-3) clusters was theoretically studied employing density functional theory. For all studied clusters, initial adsorption of N2 (end-on) on one of the metal atoms (denoted as Site 1) is transferred to an of end-on: side-on: side-on coordination on three metal atoms, prior to N2 dissociation. The whole reaction is exothermic and has no global energy barriers, indicating that the dissociation of N2 is facile under mild conditions. The reaction process can be divided into two processes: N2 transfer (TRF) and N-N dissociation (DIS). For V-series clusters, which has a V atom on Site 1, the rate-determining step is DIS, while for Ta-series clusters with a Ta on Site 1, TRF may be the rate-determining step or has energy barriers similar to those of DIS. The overall energy barriers for heteronuclear V2 TaC4- and VTa2 C4- clusters are lower than those for homonuclear V3 C4- and Ta3 C4- , showing that the doping effect is beneficial for the activation and dissociation of N2 . In particular, V-Ta2 C4- has low energy barriers in both TRF and DIS, and it has the highest N2 adsorption energy and a high reaction heat release. Therefore, a trimetallic heteronuclear V-series cluster, V-Ta2 C4- , is suggested to have high reactivity to N2 activation, and may serve as a prototype for designing related catalysts at a molecular level.


Assuntos
Metais , Ânions , Catálise , Metais/química
4.
Phys Chem Chem Phys ; 24(23): 14375-14389, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35642957

RESUMO

Developing universal theoretical models for perovskites (often denoted as ABX3) can contribute to the rational design of novel perovskite photovoltaic materials. However, few models can be successfully applied to study the intrinsic electronic structure due to the poor accuracy and unaffordable computational cost. Herein, we report the innovative construction of small practical cluster models through the similarity criterion of the central location environment, which retains only the central A-site as the original cation while the others are substituted by Cs to keep the clusters electrically neutral. The central cation has a chemical environment similar to that of the bulk perovskite. The binding energy between A and the BX framework, geometric structures (B-X distances and B-X-B angles), and the electronic structures (the gap and the spatial distribution of HOMO and LUMO, electron distribution) of these clusters have been investigated and compared with the corresponding properties of bulk materials. The results suggest that the cluster model with twelve B-atoms suitably describes these properties. The geometric structures and gaps are closer to the bulk situations than the quasi-one-dimensional and quasi-two-dimensional cluster models with all-primitive cations, respectively. Other organic cations, such as NH3(CH2)nCH3 (n = 1, 2, and 3 for EA, PA, and BA, respectively), and (NH2)2CH (FA) can, therefore, mimic perovskite materials. Clusters with different sizes of A indicate that PA and BA will distort the quasi-cubic structures, which is consistent with the judgment of the tolerance factor of bulk materials. The reliable cluster model provides the research foundation for some basic issues of perovskites, such as vibrational spectroscopy and hydrogen bonding strength, to gain detailed insight into the interactions between A and the BX framework.

5.
Phys Chem Chem Phys ; 23(1): 347-355, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346760

RESUMO

Structures of non-stoichiometric MoxSy clusters (x = 2-4; y = 2-10) were studied by density functional calculations with global optimization. Besides 1T phase like structures, a novel regular grid structure in which Mo atoms are well separated by S atoms was found, which might be used as a building-block to construct a new type of two-dimensional molybdenum sulfide monolayer. The hydrogen molecule prefers to be adsorbed onto Mo atoms rather than S atoms, and Mo atoms with less S coordination have a higher ability to adsorb H2. In addition, the reaction pathways for H2 dissociation were studied on two clusters with the highest H2 adsorption energy (Mo2S4 and Mo3S3). The vacant bridge site of Mo-Mo in S-deficient clusters, which corresponds to the sulfur vacancy in the bulk phase MoS2, is favored by H atom adsorption and plays an important role in the H atom transfer on MoxSy clusters. Our results provide a new aspect to understand the reason why S defect in MoS2 and MoS2 with an Mo-edge could enhance the catalytic performance in the hydrogen evolution reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA