RESUMO
Localized plasmon resonance (LSPR) spectroscopy, employing gold nanodisk substrates, is applied for studies of photoswitching in self-assembled monolayers of azobenzene-containing thiols. By choosing customized samples in which the sharp LSPR resonance is well separated from the spectral regime of the molecular absorption bands, the photoisomerization kinetics of the adlayer can be monitored in real time. Quantitative data on the photoinduced trans-cis and cis-trans isomerization processes in inert gas atmosphere were obtained as a function of irradiation intensity and temperature, demonstrating the high sensitivity of this technique to such processes in functional adlayers.
RESUMO
Indirect nanoplasmonic sensing (INPS) is an experimental platform exploiting localized surface plasmon resonance (LSPR) detection of processes in nanomaterials, molecular assemblies, and films at the nanoscale. Here we have for the first time applied INPS to study dye molecule adsorption/impregnation of two types of TiO(2) materials: thick (10 µm) mesoporous films of the kind used as photoanode in dye-sensitized solar cells (DSCs), with particle/pore size in the range of 20 nm, and thin (12-70 nm), dense, and flat films. For the thick-film experiments plasmonic Au nanoparticles were placed at the hidden, internal interface between the sensor surface and the mesoporous TiO(2). This approach provides a unique opportunity to selectively follow dye adsorption locally in the hidden interface region inside the material and inspires a generic and new type of nanoplasmonic hidden interface spectroscopy. The specific DSC measurement revealed a time constant of thousands of seconds before the dye impregnation front (the diffusion front) reaches the hidden interface. In contrast, dye adsorption on the dense, thin TiO(2) films exhibited much faster, Langmuir-like monolayer formation kinetics with saturation on a time scale of order 100 s. This new type of INPS measurement provides a powerful tool to measure and optimize dye impregnation kinetics of DSCs and, from a more general point of view, offers a generic experimental platform to measure adsorption/desorption and diffusion phenomena in solid and mesoporous systems and at internal hidden interfaces.
RESUMO
Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO(2) films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured.
RESUMO
We have measured the angular distribution of light scattered off 2D plasmonic Al nanoparticle ensembles. We created these samples with disk-like nanoparticles, 175 and 500 nm in diameter, respectively, using hole-mask colloidal lithography and electron beam lithography. The nanoparticle arrangements in the samples display the short-range order (but no long-range order) characteristic for an ensemble formed by random sequential adsorption. As a consequence of this, the ensemble scattering patterns can be quantitatively well described by combining the single-particle scattering pattern with a static structure factor that carries information about the diffraction effects caused by the short-range order of the ensemble. We also performed sensing experiments in which we monitored changes in the angle-resolved scattering intensity for a fixed wavelength as a function of the thickness of an ultrathin SiO(2) coating covering the Al nanoparticles. The data show that the angle and strength of the main diffraction peak vary linearly with SiO(2) coating thickness in the range 1.5-4.5 nm and suggest that measurements of the scattering profile could be a competitive alternative to traditional transmission measurements in terms of sensitivity.
Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Luz , Teste de Materiais , Tamanho da PartículaRESUMO
Nanocomposite layers of Ag nanoparticles and a-Si:H film constitute attractive candidates for the realization of ultrathin "two-dimensional" plasmonic solar cells, with an ideal 18% efficiency predicted for an average layer thickness of only 20 nm. By combining optical spectroscopy with photoconductivity measurements, we here characterize different contributions to the light absorption and charge carrier generation in such nanocomposites. We focus in particular on the important role of the absorber layer thickness for these processes, by studying a range of a-Si:H thicknesses from 9 to 67 nm. Through detailed comparison with numerical calculations by the finite element method, observed experimental features are connected to specific resonance modes and charge carrier generation mechanisms. The influence of dipolar and quadrupolar near-field distributions are evaluated with respect to different figures of merit for plasmonic solar cells. We briefly discuss how the present findings may be implemented in practical solar cell configurations.