Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7899): 131-137, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197628

RESUMO

Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Códon sem Sentido , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único/genética
2.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806233

RESUMO

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.

4.
Nucleic Acids Res ; 51(D1): D167-D178, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399497

RESUMO

Dysregulation of RNA splicing contributes to both rare and complex diseases. RNA-sequencing data from human tissues has shown that this process can be inaccurate, resulting in the presence of novel introns detected at low frequency across samples and within an individual. To enable the full spectrum of intron use to be explored, we have developed IntroVerse, which offers an extensive catalogue on the splicing of 332,571 annotated introns and a linked set of 4,679,474 novel junctions covering 32,669 different genes. This dataset has been generated through the analysis of 17,510 human control RNA samples from 54 tissues provided by the Genotype-Tissue Expression Consortium. IntroVerse has two unique features: (i) it provides a complete catalogue of novel junctions and (ii) each novel junction has been assigned to a specific annotated intron. This unique, hierarchical structure offers multiple uses, including the identification of novel transcripts from known genes and their tissue-specific usage, and the assessment of background splicing noise for introns thought to be mis-spliced in disease states. IntroVerse provides a user-friendly web interface and is freely available at https://rytenlab.com/browser/app/introverse.


Assuntos
Bases de Dados Genéticas , Íntrons , Splicing de RNA , Humanos , Processamento Alternativo , Sequência de Bases , Íntrons/genética , RNA , Splicing de RNA/genética
5.
Mov Disord ; 39(3): 486-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197134

RESUMO

BACKGROUND: Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES: Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS: We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS: Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS: These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Linhagem , Ataxias Espinocerebelares/genética , Ataxia Cerebelar/genética , Éxons , Proteínas de Homeodomínio/genética
6.
Brain ; 146(7): 2869-2884, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624280

RESUMO

Improvements in functional genomic annotation have led to a critical mass of neurogenetic discoveries. This is exemplified in hereditary ataxia, a heterogeneous group of disorders characterised by incoordination from cerebellar dysfunction. Associated pathogenic variants in more than 300 genes have been described, leading to a detailed genetic classification partitioned by age-of-onset. Despite these advances, up to 75% of patients with ataxia remain molecularly undiagnosed even following whole genome sequencing, as exemplified in the 100 000 Genomes Project. This study aimed to understand whether we can improve our knowledge of the genetic architecture of hereditary ataxia by leveraging functional genomic annotations, and as a result, generate insights and strategies that raise the diagnostic yield. To achieve these aims, we used publicly-available multi-omics data to generate 294 genic features, capturing information relating to a gene's structure, genetic variation, tissue-specific, cell-type-specific and temporal expression, as well as protein products of a gene. We studied these features across genes typically causing childhood-onset, adult-onset or both types of disease first individually, then collectively. This led to the generation of testable hypotheses which we investigated using whole genome sequencing data from up to 2182 individuals presenting with ataxia and 6658 non-neurological probands recruited in the 100 000 Genomes Project. Using this approach, we demonstrated a high short tandem repeat (STR) density within childhood-onset genes suggesting that we may be missing pathogenic repeat expansions within this cohort. This was verified in both childhood- and adult-onset ataxia patients from the 100 000 Genomes Project who were unexpectedly found to have a trend for higher repeat sizes even at naturally-occurring STRs within known ataxia genes, implying a role for STRs in pathogenesis. Using unsupervised analysis, we found significant similarities in genomic annotation across the gene panels, which suggested adult- and childhood-onset patients should be screened using a common diagnostic gene set. We tested this within the 100 000 Genomes Project by assessing the burden of pathogenic variants among childhood-onset genes in adult-onset patients and vice versa. This demonstrated a significantly higher burden of rare, potentially pathogenic variants in conventional childhood-onset genes among individuals with adult-onset ataxia. Our analysis has implications for the current clinical practice in genetic testing for hereditary ataxia. We suggest that the diagnostic rate for hereditary ataxia could be increased by removing the age-of-onset partition, and through a modified screening for repeat expansions in naturally-occurring STRs within known ataxia-associated genes, in effect treating these regions as candidate pathogenic loci.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Adulto , Humanos , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ataxia/diagnóstico , Ataxia/genética , Genômica , Testes Genéticos
7.
J Am Chem Soc ; 145(29): 15754-15765, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163700

RESUMO

Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solution-phase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.

8.
Neurobiol Dis ; 180: 106082, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925053

RESUMO

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Homem de Neandertal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Homem de Neandertal/genética , Doenças Neurodegenerativas/genética , Seleção Genética
9.
Bioinformatics ; 38(15): 3844-3846, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35751589

RESUMO

MOTIVATION: The advent of long-read sequencing technologies has increased demand for the visualization and interpretation of transcripts. However, tools that perform such visualizations remain inflexible and lack the ability to easily identify differences between transcript structures. Here, we introduce ggtranscript, an R package that provides a fast and flexible method to visualize and compare transcripts. As a ggplot2 extension, ggtranscript inherits the functionality and familiarity of ggplot2 making it easy to use. AVAILABILITY AND IMPLEMENTATION: ggtranscript is an R package available at https://github.com/dzhang32/ggtranscript (DOI: https://doi.org/10.5281/zenodo.6374061) via an open-source MIT licence. Further documentation is available at https://dzhang32.github.io/ggtranscript/.


Assuntos
Software , Análise de Sequência de DNA/métodos , Isoformas de Proteínas/genética
10.
Ann Neurol ; 90(1): 76-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938021

RESUMO

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Idoso , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Penetrância
11.
Eur J Neurol ; 29(8): 2192-2200, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384166

RESUMO

BACKGROUND AND PURPOSE: The Faroe Islands are a geographically isolated population in the North Atlantic with a similar prevalence of Alzheimer's disease (AD) and all-cause dementia as other European populations. However, the genetic risk underlying AD and other dementia susceptibility has yet to be elucidated. METHODS: Forty-nine single-nucleotide polymorphisms (SNPs) were genotyped in 174 patients with AD and other dementias and 159 healthy controls. Single variant and polygenic risk score (PRS) associations, with/without APOE variability, were assessed by logistic regression. Performance was examined using receiver operating characteristic area under the curve (ROC AUC) analysis. RESULTS: APOErs429358 was associated with AD in the Faroese cohort after correction for multiple testing (odds ratio [OR] 6.32, 95% confidence interval [CI] 3.98-10.05, p = 6.31e-15 ), with suggestive evidence for three other variants: NECTIN2 rs41289512 (OR 2.05, 95% CI 1.20-3.51, p = 0.01), HLA-DRB1 rs6931277 (OR 0.67, 95% CI 0.48-0.94, p = 0.02) and APOE rs7412 [ε2] (OR 0.28, 95% CI 0.11-0.73, p = 0.01). PRSs were associated with AD with or without the inclusion of APOE (PRS+APOE OR = 4.5, 95% CI 2.90-5.85, p = 4.56e-15 , and PRS-APOE OR = 1.53, 95% CI 1.21-1.98, p = 6.82e-4 ). AD ROC AUC analyses demonstrated a PRS+APOE AUC = 80.3% and PRS-APOE AUC = 63.4%. However, PRS+APOE was also significantly associated with all-cause dementia (OR = 3.39, 95% CI 2.51-4.71, p = 2.50e-14 ) with an AUC = 76.9%, that is, all-cause dementia showed similar results albeit less significant. DISCUSSION: In the Faroe Islands, SNP analyses highlighted APOE and immunogenomic variability in AD and dementia risk. PRS+APOE , based on 25 SNPs/loci, had excellent sensitivity and specificity for AD with an AUC of 80.3%. High PRSs were also associated with an earlier onset of late-onset AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Genótipo , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Eur J Neurol ; 28(4): 1344-1355, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33220101

RESUMO

BACKGROUND AND PURPOSE: Pathogenic variants in PLEKHG5 have been reported to date to be causative in three unrelated families with autosomal recessive intermediate Charcot-Marie-Tooth disease (CMT) and in one consanguineous family with spinal muscular atrophy (SMA). PLEKHG5 is known to be expressed in the human peripheral nervous system, and previous studies have shown its function in axon terminal autophagy of synaptic vesicles, lending support to its underlying pathogenetic mechanism. Despite this, there is limited knowledge of the clinical and genetic spectrum of disease. METHODS: We leverage the diagnostic utility of exome and genome sequencing and describe novel biallelic variants in PLEKHG5 in 13 individuals from nine unrelated families originating from four different countries. We compare our phenotypic and genotypic findings with a comprehensive review of cases previously described in the literature. RESULTS: We found that patients presented with variable disease severity at different ages of onset (8-25 years). In our cases, weakness usually started proximally, progressing distally, and can be associated with intermediate slow conduction velocities and minor clinical sensory involvement. We report three novel nonsense and four novel missense pathogenic variants associated with these PLEKHG5-associated neuropathies, which are phenotypically spinal muscular atrophy (SMA) or intermediate Charcot-Marie-Tooth disease. CONCLUSIONS: PLEKHG5-associated neuropathies should be considered as an important differential in non-5q SMAs even in the presence of mild sensory impairment and a candidate causative gene for a wide range of hereditary neuropathies. We present this series of cases to further the understanding of the phenotypic and molecular spectrum of PLEKHG5-associated diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Genes Recessivos , Genótipo , Fatores de Troca do Nucleotídeo Guanina , Humanos , Mutação , Fenótipo
13.
Biophys J ; 118(2): 415-421, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31839260

RESUMO

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.


Assuntos
Luz , Fitocromo/química , Escuridão , Deinococcus , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fitocromo/metabolismo , Domínios Proteicos
14.
Phys Rev Lett ; 125(22): 226001, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315438

RESUMO

Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.

15.
Phys Chem Chem Phys ; 22(17): 9195-9203, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32149285

RESUMO

Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nano- to milliseconds. We identify two sequentially forming Lumi-R states which differ in the local structure surrounding the carbonyl group of the biliverdin D-ring. We also find that the tyrosine at position 263 alters local structure and dynamics around the D-ring and causes an increased rate of Pfr formation. The results shed new light on the mechanism of light-signalling in phytochrome proteins.


Assuntos
Deinococcus/química , Deinococcus/genética , Modelos Moleculares , Fitocromo/química , Espectrofotometria Infravermelho , Proteínas de Bactérias/química , Transdução de Sinal Luminoso/genética , Mutação , Estrutura Terciária de Proteína
16.
Muscle Nerve ; 60(3): 311-314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241196

RESUMO

INTRODUCTION: Primary periodic paralyses (PPs) are rare genetic neuromuscular disorders commonly caused by mutations in genes related to ion channel function. However, 10%-20% of cases remain as genetically unexplained. Herein we present a family with PP with paralytic episodes generally lasting for 1-7 days at a time, associated with a drop in K+ levels. METHODS: Screening for mutations in known disease-causing genes was negative, hence we performed whole-exome sequencing of 5 family members. RESULTS: Minichromosome maintenance 3-associated protein (MCM3AP) c.2615G>A (p.C872Y) was found to cosegregate with disease in the family and was not present in control subjects. The mutation is novel, highly conserved across multiple species, and predicted to be damaging. DISCUSSION: MCM3AP encodes germinal center-associated nuclear protein (GANP), a protein involved in the export of certain messenger RNAs from the nucleus to the cytoplasm. Our findings suggest that a novel mutation in MCM3AP is associated with hypokalemic PP. Muscle Nerve, 2019.


Assuntos
Acetiltransferases/genética , Paralisia Periódica Hipopotassêmica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Paralisias Periódicas Familiares/genética , Idoso de 80 Anos ou mais , Humanos , Masculino , Paralisias Periódicas Familiares/diagnóstico , Linhagem , RNA Mensageiro/genética
17.
J Chem Phys ; 151(2): 024201, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31301711

RESUMO

Two-dimensional electronic spectroscopy, and especially the polarization-controlled version of it, is the cutting edge technique for disentangling various types of coherences in molecules and molecular aggregates. In order to evaluate the electronic coherences, which often decay on a 100 fs time scale, the early population times have to be included in the analysis. However, signals in this region are typically plagued by several artifacts, especially in the unavoidable pulse overlap region. In this paper, we show that, in the case of polarization-controlled two-dimensional spectroscopy experiment, the early-time dynamics can be dominated by the "incorrect" pulse ordering signals. These signals can affect kinetics at positive times well beyond the pulse overlap region, especially when the "correct" pulse ordering signals are much weaker. Moreover, the "incorrect" pulse ordering contributions are oscillatory and overlap with the spectral signatures of energy transfer, which may lead to misinterpretation of "incorrect" pulse ordering signals for fast-decaying coherences.

18.
J Am Chem Soc ; 140(39): 12396-12404, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30183281

RESUMO

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach in the second intermediate (Meta-R), and finally reform in the signaling state (Pfr). The spectra reveal via isotope labeling that the refolding of the conserved "PHY-tongue" region occurs with the last transition between Meta-R and Pfr. Additional changes in the protein backbone are detected already within microseconds in Lumi-R. Aided by molecular dynamics simulations, we find that a strictly conserved salt bridge between an arginine of the PHY tongue and an aspartate of the chromophore binding domains is broken in Lumi-R and the arginine is recruited to the D-ring C═O. This rationalizes how isomerization of the chromophore is linked to the global structural rearrangement in the sensory receptor. Our findings advance the structural understanding of phytochrome photoactivation.


Assuntos
Biliverdina/química , Deinococcus/química , Fitocromo/química , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Deinococcus/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Fitocromo/metabolismo , Conformação Proteica em Folha beta , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
19.
J Am Chem Soc ; 138(7): 2312-8, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26796542

RESUMO

Vibrational spectra contain unique information on protein structure and dynamics. However, this information is often obscured by spectral congestion, and site-selective information is not available. In principle, sites of interest can be spectrally identified by isotope shifts, but site-specific isotope labeling of proteins is today possible only for favorable amino acids or with prohibitively low yields. Here we present an efficient cell-free expression system for the site-specific incorporation of any isotope-labeled amino acid into proteins. We synthesized 1.6 mg of green fluorescent protein with an isotope-labeled tyrosine from 100 mL of cell-free reaction extract. We unambiguously identified spectral features of the tyrosine in the fingerprint region of the time-resolved infrared absorption spectra. Kinetic analysis confirmed the existence of an intermediate state between photoexcitation and proton transfer that lives for 3 ps. Our method lifts vibrational spectroscopy of proteins to a higher level of structural specificity.


Assuntos
Proteínas de Fluorescência Verde/química , Isótopos de Carbono , Proteínas de Fluorescência Verde/síntese química , Modelos Moleculares , Estrutura Molecular , Isótopos de Oxigênio , Teoria Quântica , Espectrofotometria Infravermelho , Tirosina/química , Vibração
20.
Hum Mol Genet ; 23(7): 1794-801, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218364

RESUMO

A Saskatchewan multi-incident family was clinically characterized with Parkinson disease (PD) and Lewy body pathology. PD segregates as an autosomal-dominant trait, which could not be ascribed to any known mutation. DNA from three affected members was subjected to exome sequencing. Genome alignment, variant annotation and comparative analyses were used to identify shared coding mutations. Sanger sequencing was performed within the extended family and ethnically matched controls. Subsequent genotyping was performed in a multi-ethnic case-control series consisting of 2928 patients and 2676 control subjects from Canada, Norway, Taiwan, Tunisia, and the USA. A novel mutation in receptor-mediated endocytosis 8/RME-8 (DNAJC13 p.Asn855Ser) was found to segregate with disease. Screening of cases and controls identified four additional patients with the mutation, of which two had familial parkinsonism. All carriers shared an ancestral DNAJC13 p.Asn855Ser haplotype and claimed Dutch-German-Russian Mennonite heritage. DNAJC13 regulates the dynamics of clathrin coats on early endosomes. Cellular analysis shows that the mutation confers a toxic gain-of-function and impairs endosomal transport. DNAJC13 immunoreactivity was also noted within Lewy body inclusions. In late-onset disease which is most reminiscent of idiopathic PD subtle deficits in endosomal receptor-sorting/recycling are highlighted by the discovery of pathogenic mutations VPS35, LRRK2 and now DNAJC13. With this latest discovery, and from a neuronal perspective, a temporal and functional ecology is emerging that connects synaptic exo- and endocytosis, vesicular trafficking, endosomal recycling and the endo-lysosomal degradative pathway. Molecular deficits in these processes are genetically linked to the phenotypic spectrum of parkinsonism associated with Lewy body pathology.


Assuntos
Corpos de Lewy/genética , Chaperonas Moleculares/genética , Mutação/genética , Doença de Parkinson/genética , Adulto , Idade de Início , Idoso , Sequência de Bases , Estudos de Casos e Controles , Células Cultivadas , Endocitose/genética , Endossomos/genética , Família , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença por Corpos de Lewy/genética , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/imunologia , Linhagem , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA