Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 291(26): 13834-45, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27189951

RESUMO

The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1-3 and Manα1-6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the ß3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328-9339). Here, we demonstrate that TbGT15, another member of the same ß3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1-6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1-3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of ß3-glycosyltransferase family members to catalyze ß1-2 glycosidic linkages.


Assuntos
Genes de Protozoários/fisiologia , Glucosiltransferases , Proteínas de Protozoários , Trypanosoma brucei brucei , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
2.
Nature ; 464(7289): 728-32, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20360736

RESUMO

African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for approximately 30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target-T. brucei N-myristoyltransferase-leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis in mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.


Assuntos
Aciltransferases/antagonistas & inibidores , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Aciltransferases/metabolismo , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Antiparasitários/química , Antiparasitários/metabolismo , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Estrutura Molecular , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Fatores de Tempo , Trypanosoma brucei brucei/crescimento & desenvolvimento
3.
J Biol Chem ; 289(13): 9328-39, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550396

RESUMO

Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known ß1-4-galactosyltransferase or ß1-2- or ß1-6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian ß1-3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-D-mannoside ß1-2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical "pseudohybrid" glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man3GlcNAc2, but not to triantennary Man5GlcNAc2, which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the ß3-glycosyltransferase family to catalyze ß1-2 linkages.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Trypanosoma brucei brucei/enzimologia , Sangue/parasitologia , Linhagem Celular , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Mutação , N-Acetilglucosaminiltransferases/genética , Fenótipo , Polissacarídeos/biossíntese , Transporte Proteico , Especificidade por Substrato , Trypanosoma brucei brucei/fisiologia , Difosfato de Uridina/metabolismo
4.
Glycobiology ; 18(5): 367-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18263655

RESUMO

We recently suggested a novel site-specific N-glycosylation mechanism in Trypanosoma brucei whereby some protein N-glycosylation sites selectively receive Man9GlcNAc2 from Man9GlcNAc2-PP-Dol while others receive Man5GlcNA(2 from Man5GlcNAc2-PP-Dol. In this paper, we test this model by creating procyclic and bloodstream form null mutants of TbALG3, the gene that encodes the alpha-mannosyltransferase that converts Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol. The procyclic and bloodstream form TbALG3 null mutants grow with normal kinetics, remain infectious to mice and tsetse flies, respectively, and have normal morphology. However, both forms display aberrant N-glycosylation of their major surface glycoproteins, procylcin, and variant surface glycoprotein, respectively. Specifically, procyclin and variant surface glycoprotein N-glycosylation sites that are modified with Man9GlcNAc2 and processed no further than Man5GlcNAc2 in the wild type are glycosylated less efficiently but processed to complex structures in the mutant. These data confirm our model and refine it by demonstrating that the biantennary glycan transferred from Man5GlcNAc2-PP-Dol is the only route to complex N-glycans in T. brucei and that Man9GlcNAc2-PP-Dol is strictly a precursor for oligomannose structures. The origins of site-specific Man5GlcNAc2 or Man9GlcNAc2 transfer are discussed and an updated model of N-glycosylation in T. brucei is presented.


Assuntos
Manosiltransferases/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Deleção de Genes , Glicosilação , Manosiltransferases/química , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Oligossacarídeos/metabolismo , Proteínas de Protozoários/química , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
5.
Methods Mol Biol ; 1022: 249-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23765667

RESUMO

The survival strategies of protozoan parasites frequently involve the participation of glycoconjugates. Trypanosoma brucei expresses complex glycoproteins throughout its life cycle and a review of its repertoire of glycosidic linkages suggests a minimum of 38 glycosyltransferase activities. Here we describe a functional characterization workflow in which we create glycosyltransferase null or conditional null mutants in both the bloodstream and procyclic life-cycle forms of the parasite. Subsequently, we characterize the biochemical phenotype of the mutant strains generated and assign precise functions to the genes involved in glycoconjugate biosynthesis and processing in T. brucei. In this way, a comprehensive picture of -T. brucei glycosylation associated genes, their specificities and their relationship to similar genes in other organisms can be obtained.


Assuntos
Glicoconjugados/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Animais , Eletroforese em Gel de Poliacrilamida/métodos , Eletroporação/métodos , Deleção de Genes , Glicoconjugados/análise , Glicoconjugados/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Transfecção/métodos , Trypanosoma brucei brucei/metabolismo
6.
PLoS One ; 7(5): e36619, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574199

RESUMO

The protozoan parasite Trypanosoma brucei has a complex digenetic lifecycle between a mammalian host and an insect vector, and adaption of its proteome between lifecycle stages is essential to its survival and virulence. We have optimized a procedure for growing Trypanosoma brucei procyclic form cells in conditions suitable for stable isotope labeling by amino acids in culture (SILAC) and report a comparative proteomic analysis of cultured procyclic form and bloodstream form T. brucei cells. In total we were able to identify 3959 proteins and quantify SILAC ratios for 3553 proteins with a false discovery rate of 0.01. A large number of proteins (10.6%) are differentially regulated by more the 5-fold between lifecycle stages, including those involved in the parasite surface coat, and in mitochondrial and glycosomal energy metabolism. Our proteomic data is broadly in agreement with transcriptomic studies, but with significantly larger fold changes observed at the protein level than at the mRNA level.


Assuntos
Aminoácidos/metabolismo , Sangue/parasitologia , Técnicas de Cultura , Estágios do Ciclo de Vida , Proteômica/métodos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Animais , Genômica , Humanos , Marcação por Isótopo , Reprodutibilidade dos Testes
7.
Mol Biochem Parasitol ; 169(1): 55-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19782106

RESUMO

The enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyses the co-translational covalent attachment of the fatty acid myristate to the N-terminus of target proteins. NMT is known to be essential for viability in Trypanosoma brucei and Leishmania major. Here we describe phenotypic analysis of T. brucei bloodstream form cells following knockdown of NMT expression by tetracycline-inducible RNA interference. Cell death occurs from 72h post-induction, with approximately 50% of cells displaying a defect in endocytic uptake by this time. The majority of these induced cells do not have an enlarged flagellar pocket typical of a block in endocytosis but vesicle accumulation around the flagellar pocket indicates a defect in vesicular progression following endocytic fusion. Induced parasites have a wild-type or slightly enlarged Golgi apparatus, unlike the phenotype of cells with reduced expression of a major N-myristoylated protein, ARL1. Critically we show that following NMT knockdown, T. brucei bloodstream form cells are unable to establish an infection in a mouse model, therefore providing further validation of this enzyme as a target for drug development.


Assuntos
Aciltransferases/genética , Endocitose , Proteínas de Protozoários/genética , Interferência de RNA , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/parasitologia , Aciltransferases/metabolismo , Animais , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiologia , Virulência
8.
J Biol Chem ; 283(23): 16147-61, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18381290

RESUMO

A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.


Assuntos
Nucleotidiltransferases/biossíntese , Modificação Traducional de Proteínas/fisiologia , Proteínas de Protozoários/biossíntese , Trypanosoma brucei brucei/enzimologia , Uridina Difosfato N-Acetilglicosamina/biossíntese , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Glicosilação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Lectinas de Plantas/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma brucei brucei/genética , Uridina Difosfato N-Acetilglicosamina/genética
9.
J Biol Chem ; 280(43): 35929-42, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16120601

RESUMO

The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.


Assuntos
Deleção de Genes , Trypanosoma brucei brucei/genética , alfa-Glucosidases/genética , Animais , Southern Blotting , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA/química , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/enzimologia , Glicopeptídeos/química , Glicoproteínas/química , Glicosídeo Hidrolases/química , Glicosilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metilação , Modelos Biológicos , Mutação , Fases de Leitura Aberta , Plasmídeos/metabolismo , Polissacarídeos/química , Isoformas de Proteínas , Espectrometria de Massas por Ionização por Electrospray , Glicoproteínas Variantes de Superfície de Trypanosoma/química
10.
J Biol Chem ; 280(20): 19728-36, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15767252

RESUMO

Galactose metabolism is essential in bloodstream form Trypanosoma brucei and is initiated by the enzyme UDP-Glc 4'-epimerase. Here, we show that the parasite epimerase is a homodimer that can interconvert UDP-Glc and UDP-Gal but not UDP-GlcNAc and UDP-GalNAc. The epimerase was localized to the glycosomes by immunofluorescence microscopy and subcellular fractionation, suggesting a novel compartmentalization of galactose metabolism in this organism. The epimerase is encoded by the TbGALE gene and procyclic form T. brucei single-allele knockouts, and conditional (tetracycline-inducible) null mutants were constructed. Under non-permissive conditions, conditional null mutant cultures ceased growth after 8 days and resumed growth after 15 days. The resumption of growth coincided with constitutive re-expression epimerase mRNA. These data show that galactose metabolism is essential for cell growth in procyclic form T. brucei. The epimerase is required for glycoprotein galactosylation. The major procyclic form glycoproteins, the procyclins., were analyzed in TbGALE single-allele knockouts and in the conditional null mutant after removal of tetracycline. The procyclins contain glycosylphosphatidylinositol membrane anchors with large poly-N-acetyl-lactosamine side chains. The single allele knockouts exhibited 30% reduction in procyclin galactose content. This example of haploid insufficiency suggests that epimerase levels are close to limiting in this life cycle stage. Similar analyses of the conditional null mutant 9 days after the removal of tetracycline showed that the procyclins were virtually galactose-free and greatly reduced in size. The parasites compensated, ultimately unsuccessfully, by expressing 10-fold more procyclin. The implications of these data with respect to the relative roles of procyclin polypeptide and carbohydrate are discussed.


Assuntos
Galactose/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Divisão Celular , Dimerização , Deleção de Genes , Genes de Protozoários , Microcorpos/enzimologia , Estrutura Molecular , Fenótipo , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , UDPglucose 4-Epimerase/química , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
11.
Biochemistry ; 42(49): 14532-40, 2003 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-14661966

RESUMO

Glycosylphosphatidylinositol (GPI) membrane anchors are ubiquitous among the eukaryotes. In most organisms, the pathway of GPI biosynthesis involves inositol acylation and inositol deacylation as discrete steps at the beginning and end of the pathway, respectively. The bloodstream form of the protozoan parasite Trypanosoma brucei is unusual in that these reactions occur on multiple GPI intermediates and that it can express side chains of up to six galactose residues on its mature GPI anchors. An inositol deacylase gene, T. brucei GPIdeAc, has been identified. A null mutant was created and shown to be capable of expressing normal mature GPI anchors on its variant surface glycoprotein. Here, we show that the null mutant synthesizes galactosylated forms of the mature GPI precursor, glycolipid A, at an accelerated rate (2.8-fold compared to wild type). These free GPIs accumulate at the cell surface as metabolic end products. Using continuous and pulse-chase labeling experiments, we show that there are two pools of glycolipid A. Only one pool is competent for transfer to nascent variant surface glycoprotein and represents 38% of glycolipid A in wild-type cells. This pool rises to 75% of glycolipid A in the GPIdeAc null mutant. We present a model for the pathway of GPI biosynthesis in T. brucei that helps to explain the complex phenotype of the GPIdeAc null mutant.


Assuntos
Deleção de Genes , Genes de Protozoários , Glicosilfosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Precursores de Proteínas/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Animais , Transporte Biológico/genética , Sequência de Carboidratos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Galactose/metabolismo , Glicosilfosfatidilinositóis/química , Cinética , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Precursores de Proteínas/química , Proteínas de Protozoários/química , Frações Subcelulares/enzimologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA