RESUMO
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, â¼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição SOX9/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Crista Neural/citologia , Carcinoma de Pequenas Células do Pulmão/fisiopatologia , Células-Tronco/citologiaRESUMO
Small cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of ASCL1, NEUROD1, POU2F3, or YAP1. Here, we use mouse and human models with a time-series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC subtypes. In neuroendocrine cells, MYC activates Notch to dedifferentiate tumor cells, promoting a temporal shift in SCLC from ASCL1+ to NEUROD1+ to YAP1+ states. MYC alternatively promotes POU2F3+ tumors from a distinct cell type. Human SCLC exhibits intratumoral subtype heterogeneity, suggesting that this dynamic evolution occurs in patient tumors. These findings suggest that genetics, cell of origin, and tumor cell plasticity determine SCLC subtype.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Tumores Neuroendócrinos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Tumores Neuroendócrinos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Análise de Célula Única , Carcinoma de Pequenas Células do Pulmão/metabolismoRESUMO
PURPOSE: Small-cell lung cancer (SCLC) has been treated clinically as a homogeneous disease, but recent discoveries suggest that SCLC is heterogeneous. Whether metabolic differences exist among SCLC subtypes is largely unexplored. In this study, we aimed to determine whether metabolic vulnerabilities exist between SCLC subtypes that can be therapeutically exploited. EXPERIMENTAL DESIGN: We performed steady state metabolomics on tumors isolated from distinct genetically engineered mouse models (GEMM) representing the MYC- and MYCL-driven subtypes of SCLC. Using genetic and pharmacologic approaches, we validated our findings in chemo-naïve and -resistant human SCLC cell lines, multiple GEMMs, four human cell line xenografts, and four newly derived PDX models. RESULTS: We discover that SCLC subtypes driven by different MYC family members have distinct metabolic profiles. MYC-driven SCLC preferentially depends on arginine-regulated pathways including polyamine biosynthesis and mTOR pathway activation. Chemo-resistant SCLC cells exhibit increased MYC expression and similar metabolic liabilities as chemo-naïve MYC-driven cells. Arginine depletion with pegylated arginine deiminase (ADI-PEG 20) dramatically suppresses tumor growth and promotes survival of mice specifically with MYC-driven tumors, including in GEMMs, human cell line xenografts, and a patient-derived xenograft from a relapsed patient. Finally, ADI-PEG 20 is significantly more effective than the standard-of-care chemotherapy. CONCLUSIONS: These data identify metabolic heterogeneity within SCLC and suggest arginine deprivation as a subtype-specific therapeutic vulnerability for MYC-driven SCLC.
Assuntos
Arginina/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Redes e Vias Metabólicas , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/patologia , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.
Assuntos
Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular/métodos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológicoRESUMO
Small cell lung cancer (SCLC) is one of the most deadly cancers and currently lacks effective targeted treatment options. Recent advances in the molecular characterization of SCLC has provided novel insight into the biology of this disease and raises hope for a paradigm shift in the treatment of SCLC. We and others have identified activation of MYC as a driver of susceptibility to Aurora kinase inhibition in SCLC cells and tumors that translates into a therapeutic option for the targeted treatment of MYC-driven SCLC. While MYC shares major features with its paralogs MYCN and MYCL, the sensitivity to Aurora kinase inhibitors is unique for MYC-driven SCLC. In this review, we will compare the distinct molecular features of the 3 MYC family members and address the potential implications for targeted therapy of SCLC.
Assuntos
Neoplasias Pulmonares/genética , Oncogenes , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Modelos Animais de Doenças , Humanos , Transdução de SinaisRESUMO
Small cell lung cancer (SCLC) is a recalcitrant cancer for which no new treatments have been approved in over 30 years. While molecular subtyping now guides treatment selection for patients with non-small cell lung cancer and other cancers, SCLC is still treated as a single disease entity. Using model-based clustering, we found two major proteomic subtypes of SCLC characterized by either high thyroid transcription factor-1 (TTF1)/low cMYC protein expression or high cMYC/low TTF1. Applying "drug target constellation" (DTECT) mapping, we further show that protein levels of TTF1 and cMYC predict response to targeted therapies including aurora kinase, Bcl2, and HSP90 inhibitors. Levels of TTF1 and DLL3 were also highly correlated in preclinical models and patient tumors. TTF1 (used in the diagnosis lung cancer) could therefore be used as a surrogate of DLL3 expression to identify patients who may respond to the DLL3 antibody-drug conjugate rovalpituzumab tesirine. These findings suggest that TTF1, cMYC or other protein markers identified here could be used to identify subgroups of SCLC patients who may respond preferentially to several emerging targeted therapies.
RESUMO
Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.
Assuntos
Aurora Quinases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/fisiologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Progressão da Doença , Humanos , Neoplasias Pulmonares/etiologia , Camundongos , Carcinoma de Pequenas Células do Pulmão/etiologiaRESUMO
Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) were recently found in ~80% of WHO grade II-III gliomas and secondary glioblastomas. These mutations reduce the enzyme's ability to convert isocitrate to α-ketoglutarate and, instead, confer a novel gain-of-function resulting in the conversion of α-ketoglutarate to 2-hydroxglutarate (2-HG). However, IDH mutations exist in a heterozygous state such that a functional wild type allele is retained. Recent data suggest that the ability of mutant IDH1, but not mutant IDH2, to produce 2-HG is dependent on the activity of the retained wild type allele. In this study, we aimed to further our understanding of the interaction and function of wild type and mutant IDH heterodimers utilizing Bimolecular Fluorescence Complementation (BiFC). Dimerization of wild type and mutant IDH monomers conjugated to the N- and C-terminus of Venus protein, respectively, is directly proportional to the amount of fluorescence emitted and can be used as an approach to visualize and assess IDH dimerization. Thus, we utilized this method to visualize IDH homo- and heterodimers and to examine their cellular physiology based on subcellular localization, NADPH production, and 2-HG levels. Our results demonstrate that wild type and mutant IDH1 or IDH2 heterodimers display similar physiological characteristics to that of mutant IDH1 or IDH2 homodimers with the exception of their ability to generate NADPH. IDH1 heterodimers consistently generate NADPH whereas IDH2 heterodimers do not. However, the presence of mutant IDH1 or IDH2 in homo- or heterodimer configurations consistently generates equivalent levels of 2-HG. Our data suggest that the wild type protein is not required for the generation of 2-HG.