Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(20)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39459820

RESUMO

Ag-based electrical contact materials are essential in low-voltage devices such as relays, switches, circuit breakers, and contactors. Historically, Ag-CdO composites have been preferred due to their superior electrical and thermal conductivities, resistance to arcing, and mechanical strength. However, the toxicity of Cd has led to increased restrictions on its use. With the aim of contributing to the development of a new environment-friendly, Ag-Zn2SnO4-based electrical contact material, the kinetics of the hot mechanochemical oxidation of a Ag-Sn-Zn solid solution obtained by mechanical alloying were investigated. The results indicated that the proposed synthesis route produces Ag-based composites with a homogeneous distribution of nanoscale Zn2SnO4 precipitates, which is unattainable through conventional material processing methods. This kinetic study established that the mechanochemical oxidation of the Ag-Sn-Zn solid solution follows the Johnson-Mehl-Avrami-Kolmogorov model. An analysis of the microstructure and the relationship between the activation energy "Ea" and the Avrami exponent "n" from experimental data fitting suggests that the primary mechanism for the oxidation of the Ag-Sn-Zn solid solution during the hot mechanochemical process is related to the three-dimensional oxide growth being limited by oxygen diffusion after its immediate initial nucleation.

2.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687710

RESUMO

The deterioration of reinforced concrete structures in marine environments presents multiple problems due to the premature degradation of reinforced steel. This work aimed to study the corrosion of reinforced A630-420H steel when exposed to a 0.5 M NaCl solution. Although this carbon steel is the most widely used material for reinforced concrete structures in Chile, there is limited research on its resistance to corrosion when in contact with saline solutions. The electrochemical reactions and their roles in the corrosion rate were studied using linear sweep voltammetry, weight loss, scanning electron microscopy, and X-ray diffraction techniques. This analysis is unique as it used the superposition model based on mixed potential theory to determine the electrochemical and corrosion parameters. The outcomes of this study show that A630-420H steel has a higher corrosion rate than those of the other commercial carbon steels studied. This fact can be attributed to the competition between the cathodic oxygen reduction reaction and hydrogen evolution reaction, which also depends on the environmental conditions, exposure time, stabilization of the corrosion products layer, and presence of chloride ions. Additionally, the results under mechanical stress conditions show a brittle fracture of the corrosion product oriented longitudinally in the direction of the bend section, where the presence of pores and cracks were also observed. The corrosion products after corrosion were mainly composed of magnetite and lepidocrocite oxide phases, which is in concordance with the electrochemical results.

3.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241245

RESUMO

This study investigated the synthesis of Ag-SnO2-ZnO by powder metallurgy methods and their subsequent electrical contact behavior. The pieces of Ag-SnO2-ZnO were prepared by ball milling and hot pressing. The arc erosion behavior of the material was evaluated using homemade equipment. The microstructure and phase evolution of the materials were investigated through X-ray diffraction, energy-dispersive spectroscopy and scanning electron microscopy. The results showed that, although the mass loss of the Ag-SnO2-ZnO composite (9.08 mg) during the electrical contact test was higher than that of the commercial Ag-CdO (1.42 mg), its electrical conductivity remained constant (26.9 ± 1.5% IACS). This fact would be related to the reaction of Zn2SnO4's formation on the material's surface via electric arc. This reaction would play an important role in controlling the surface segregation and subsequent loss of electrical conductivity of this type of composite, thus enabling the development of a new electrical contact material to replace the non-environmentally friendly Ag-CdO composite.

4.
Materials (Basel) ; 15(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009273

RESUMO

The increase in longevity worldwide has intensified the use of different types of prostheses for the human body, such as those used in dental work as well as in hip and knee replacements. Currently, Ti-6Al-4V is widely used as a joint implant due to its good mechanical properties and durability. However, studies have revealed that this alloy can release metal ions or particles harmful to human health. The mechanisms are not well understood yet and may involve wear and/or corrosion. Therefore, in this work, commercial pure titanium and a Ti-6Al-4V alloy were investigated before and after being exposed to a simulated biological fluid through tribological tests, surface analysis, and ionic dissolution characterization by ICP-AES. Before exposure, X-ray diffraction and optical microscopy revealed equiaxed α-Ti in both materials and ß-Ti in Ti-6Al-4V. Scratch tests exhibited a lower coefficient of friction for Ti-6Al-4V alloy than commercially pure titanium. After exposure, X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy results showed an oxide film formed by TiO2, both in commercially pure titanium and in Ti-6Al-4V, and by TiO and Al2O3 associated with the presence of the alloys. Furthermore, inductively coupled plasma atomic emission spectroscopy revealed that aluminum was the main ion released for Ti-6Al-4V, giving negligible values for the other metal ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA