Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 30(2): 214-26, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439900

RESUMO

AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Apoptose , Ciclo Celular , Linhagem Celular , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos , Complexos Multienzimáticos/genética , Complexos Multiproteicos , Biblioteca de Peptídeos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteômica , Proteína Regulatória Associada a mTOR , Serina/metabolismo , Especificidade por Substrato , Serina-Treonina Quinases TOR , Fatores de Transcrição/antagonistas & inibidores
2.
Cancer Discov ; 10(12): 1950-1967, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32727735

RESUMO

Activating mutations in RAS GTPases drive many cancers, but limited understanding of less-studied RAS interactors, and of the specific roles of different RAS interactor paralogs, continues to limit target discovery. We developed a multistage discovery and screening process to systematically identify genes conferring RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry, we generated a protein-protein interaction map of RAS interactors and pathway components containing hundreds of interactions. From this network, we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for KRAS-dependent genetic interactions (GI). This approach identified new RAS effectors, including the adhesion controller RADIL and the endocytosis regulator RIN1, and >250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of multiomic approaches to uncover synthetic lethal combinations specific for hitherto untreatable cancer genotypes. SIGNIFICANCE: We establish a deep network of protein-protein and genetic interactions in the RAS pathway. Many interactions validated here demonstrate important specificities and redundancies among paralogous RAS regulators and effectors. By comparing synthetic lethal interactions across KRAS-dependent and KRAS-independent cell lines, we identify several new combination therapy targets for RAS-driven cancers.This article is highlighted in the In This Issue feature, p. 1775.


Assuntos
Neoplasias Pulmonares/genética , Proteômica/métodos , Proteínas ras/genética , Humanos
3.
Cancer Cell ; 33(1): 91-107.e6, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316436

RESUMO

KRAS is a regulator of the nutrient stress response in non-small-cell lung cancer (NSCLC). Induction of the ATF4 pathway during nutrient depletion requires AKT and NRF2 downstream of KRAS. The tumor suppressor KEAP1 strongly influences the outcome of activation of this pathway during nutrient stress; loss of KEAP1 in KRAS mutant cells leads to apoptosis. Through ATF4 regulation, KRAS alters amino acid uptake and asparagine biosynthesis. The ATF4 target asparagine synthetase (ASNS) contributes to apoptotic suppression, protein biosynthesis, and mTORC1 activation. Inhibition of AKT suppressed ASNS expression and, combined with depletion of extracellular asparagine, decreased tumor growth. Therefore, KRAS is important for the cellular response to nutrient stress, and ASNS represents a promising therapeutic target in KRAS mutant NSCLC.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Asparaginase/farmacologia , Aspartato-Amônia Ligase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Homeostase/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos
4.
Science ; 331(6016): 456-61, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21205641

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Metabolismo Energético , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Metformina/farmacologia , Camundongos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Fenformin/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1 , Transdução de Sinais , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
5.
PLoS One ; 5(2): e9197, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20169205

RESUMO

BACKGROUND: The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process. METHODOLOGY/PRINCIPAL FINDINGS: We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase CDC2/metabolismo , Mitose , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteína Quinase CDC2/genética , Linhagem Celular , Linhagem Celular Tumoral , Ciclina B/genética , Ciclina B/metabolismo , Quinases Ciclina-Dependentes , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Proteína Regulatória Associada a mTOR , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Treonina/metabolismo , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA