RESUMO
Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.
Assuntos
Replicação do DNA/genética , DNA/genética , Processamento de Proteína Pós-Traducional/genética , RNA/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Histonas/genética , HumanosRESUMO
Autophagy is a conserved degradation process that occurs in all eukaryotic cells and its dysfunction has been associated with various diseases including cancer. While a number of large-scale attempts have recently identified new molecular players in autophagy regulation, including proteins and microRNAs, little is known regarding the function of long non-coding RNAs (lncRNAs) in the regulation of this process. To identify new long non-coding RNAs with functional implications in autophagy, we performed a high-throughput RNAi screen targeting more than 600 lncRNA transcripts and monitored their effects on autophagy in MCF-7 cells. We identified 63 lncRNAs that affected GFP-LC3B puncta numbers significantly. We validated the strongest hit, the lncRNA DRAIC previously shown to impact cell proliferation, and revealed a novel role for this lncRNA in the regulation of autophagic flux. Interestingly, we find DRAIC's pro-proliferative effects to be autophagy-independent. This study serves as a valuable resource for researchers from both the lncRNA and autophagy fields as it advances the current understanding of autophagy regulation by non-coding RNAs.