Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Physiol ; 598(4): 731-754, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710095

RESUMO

KEY POINTS: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase. ABSTRACT: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.


Assuntos
Resistência à Insulina , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Niacinamida/análogos & derivados , Obesidade/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , NAD/metabolismo , Niacinamida/administração & dosagem , Nicotinamida Fosforribosiltransferase/metabolismo , Compostos de Piridínio
2.
FASEB J ; 33(7): 8174-8185, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30922125

RESUMO

The connection between adipose glucocorticoid action and whole-body metabolism is incompletely understood. Thus, we generated adipose tissue-specific glucocorticoid receptor-knockout (Ad-GcR-/-) mice to explore potential mechanisms. Ad-GcR-/- mice had a lower concentration of fasting plasma nonesterified fatty acids and less hepatic steatosis. This was associated with increased protein kinase B phosphorylation and increased hepatic glycogen synthesis after an oral glucose challenge. High-fat diet (HFD)-fed Ad-GcR-/- mice were protected against the development of hepatic steatosis and diacylglycerol-PKCε-induced impairments in hepatic insulin signaling. Under hyperinsulinemic-euglycemic conditions, hepatic insulin response was ∼10-fold higher in HFD-fed Ad-GcR-/- mice. Insulin-mediated suppression of adipose lipolysis was improved by 40% in Ad-GcR-/- mice. Adipose triglyceride lipase expression was decreased and insulin-mediated perilipin dephosphorylation was increased in Ad-GcR-/- mice. In metabolic cages, food intake decreased by 3 kcal/kg per hour in Ad-GcR-/- mice. Therefore, physiologic adipose glucocorticoid action appears to drive hepatic lipid accumulation during stressors such as fasting. The resultant hepatic insulin resistance prevents hepatic glycogen synthesis, preserving glucose for glucose-dependent organs. Absence of adipose glucocorticoid action attenuates HFD-induced hepatic insulin resistance; potential explanations for reduction in hepatic steatosis include reductions in adipose lipolysis and food intake.-Abulizi, A., Camporez, J.-P., Jurczak, M. J., Høyer, K. F., Zhang, D., Cline, G. W., Samuel, V. T., Shulman, G. I., Vatner, D. F. Adipose glucocorticoid action influences whole-body metabolism via modulation of hepatic insulin action.


Assuntos
Tecido Adiposo/metabolismo , Glucocorticoides/metabolismo , Resistência à Insulina , Insulina/metabolismo , Lipólise , Fígado/metabolismo , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Glucocorticoides/genética , Insulina/genética , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Knockout , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Basic Clin Pharmacol Toxicol ; 123(6): 732-738, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29956485

RESUMO

The use of anaesthetics severely influences substrate metabolism. This poses challenges for patients in clinical settings and for the use of animals in diabetes research. Sevoflurane can affect regulation of glucose homoeostasis at several steps, but the tissue-specific response remains to be determined. The aim of the study was to investigate the pharmacological effect of sevoflurane anaesthesia on glucose homoeostasis during hyperinsulinaemic clamp conditions, the gold standard method for assessment of whole-body insulin sensitivity. Conscious mice (n = 6) and mice under sevoflurane anaesthesia (n = 8) underwent a hyperinsulinaemic clamp where constant infusion of insulin and donor blood was administered during variable glucose infusion to maintain isoglycaemia. 2-[1-14 C]-deoxy-D-glucose was infused to determine tissue-specific uptake of glucose in adipose tissue, heart, brain and skeletal muscle. Sevoflurane anaesthesia severely impaired insulin-stimulated whole-body glucose uptake demonstrated by a 50% lower glucose infusion rate (GIR). This was associated with decreased glucose uptake in brain, soleus, triceps and gastrocnemius muscles in sevoflurane-anaesthetized mice compared to conscious mice. Plasma-free fatty acids (FFA), a potent inducer of insulin resistance, increased by 42% in mice during sevoflurane anaesthesia. In addition, insulin secretion from pancreatic ß-cell was lower in fasted, anaesthetized mice. Sevoflurane anaesthesia impairs insulin secretion, induces insulin resistance in mice and reduces glucose uptake in non-insulin-sensitive tissue like the brain. The underlying mechanisms may involve sevoflurane-induced mobilization of FFA.


Assuntos
Anestésicos Inalatórios/farmacologia , Glucose/antagonistas & inibidores , Antagonistas da Insulina/farmacologia , Insulina/metabolismo , Sevoflurano/farmacologia , Animais , Glicemia/análise , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Técnica Clamp de Glucose , Hiperglicemia/induzido quimicamente , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Metab ; 11: 160-177, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525407

RESUMO

OBJECTIVE: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. METHODS: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. RESULTS: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). CONCLUSIONS: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Homeostase , Humanos , Interleucina-15/sangue , Interleucina-15/genética , Interleucina-15/metabolismo , Camundongos , N-Acetilglucosaminiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA