Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Infect Dis ; 71(10): e532-e539, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32166306

RESUMO

BACKGROUND: Meta-analysis of patients with isoniazid-resistant tuberculosis (TB) given standard first-line anti-TB treatment indicated an increased risk of multidrug-resistant TB (MDR-TB) emerging (8%), compared to drug-sensitive TB (0.3%). Here we use whole genome sequencing (WGS) to investigate whether treatment of patients with preexisting isoniazid-resistant disease with first-line anti-TB therapy risks selecting for rifampicin resistance, and hence MDR-TB. METHODS: Patients with isoniazid-resistant pulmonary TB were recruited and followed up for 24 months. Drug susceptibility testing was performed by microscopic observation drug susceptibility assay, mycobacterial growth indicator tube, and by WGS on isolates at first presentation and in the case of re-presentation. Where MDR-TB was diagnosed, WGS was used to determine the genomic relatedness between initial and subsequent isolates. De novo emergence of MDR-TB was assumed where the genomic distance was 5 or fewer single-nucleotide polymorphisms (SNPs), whereas reinfection with a different MDR-TB strain was assumed where the distance was 10 or more SNPs. RESULTS: Two hundred thirty-nine patients with isoniazid-resistant pulmonary TB were recruited. Fourteen (14/239 [5.9%]) patients were diagnosed with a second episode of TB that was multidrug resistant. Six (6/239 [2.5%]) were identified as having evolved MDR-TB de novo and 6 as having been reinfected with a different strain. In 2 cases, the genomic distance was between 5 and 10 SNPs and therefore indeterminate. CONCLUSIONS: In isoniazid-resistant TB, de novo emergence and reinfection of MDR-TB strains equally contributed to MDR development. Early diagnosis and optimal treatment of isoniazid-resistant TB are urgently needed to avert the de novo emergence of MDR-TB during treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Isoniazida/farmacologia , Estudos Longitudinais , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma
2.
Biol Cell ; 111(10): 262-270, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31400233

RESUMO

BACKGROUND INFORMATION: After macrophage recognises and phagocytoses the microorganism, their phagosome undergoes a maturation process, which creates a hostile environment for the bacterium. The lumen is acidified, and proteolysis occurs to kill and degrade pathogen for further antigen presentation. It is important to understand the association between the macrophage intracellular activities and the outcome of infection. Different methods have been developed to measure the phagosome dynamics of macrophages, but there are still limitations. RESULTS: We used Mycobacterium tuberculosis (Mtb) antigens, the causative agent of tuberculosis (TB), as a model of infectious disease. Adopting a fluorescent bead-based assay, we developed beads coated with trehalose 6,6'dimycolate (TDM) from Mtb cell wall and ß-glucan from yeast cell wall to measure the macrophage phagosomal activities using a microplate reader. We examined the consistency of the assay using J774 cells and validated it using human monocyte-derived macrophages (hMDM) from healthy volunteers and TB patients. There was a decreased pH and increased proteolysis in the lumen of J774 cells after phagocytosing the ligand-coated beads. J774 macrophage showed no difference in the acidification and proteolysis in response to control IgG beads, TDM and ß-glucan beads. hMDM from healthy volunteers or TB patients showed heterogeneity in the intracellular activities when treated with ligand-coated beads. CONCLUSIONS AND SIGNIFICANCE: The beads coated with specific ligands from Mtb worked well in both macrophage cell line and human primary macrophages, which can be exploited to further study the phagosomal function of macrophage in TB. Our bead model can be applied to different ligands from other pathogens, which could extend the understanding of the associations between macrophage antimicrobial functions and outcomes of infectious diseases and the possible cellular mechanisms involved.


Assuntos
Antígenos de Bactérias/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Animais , Linhagem Celular , Humanos , Modelos Biológicos , Nanopartículas/química , beta-Glucanas/química
3.
J Infect Dis ; 215(7): 1020-1028, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419368

RESUMO

Background: Tuberculous meningitis (TBM) is the most devastating form of tuberculosis, yet very little is known about the pathophysiology. We hypothesized that the genotype of leukotriene A4 hydrolase (encoded by LTA4H), which determines inflammatory eicosanoid expression, influences intracerebral inflammation, and predicts survival from TBM. Methods: We characterized the pretreatment clinical and intracerebral inflammatory phenotype and 9-month survival of 764 adults with TBM. All were genotyped for single-nucleotide polymorphism rs17525495, and inflammatory phenotype was defined by cerebrospinal fluid (CSF) leukocyte and cytokine concentrations. Results: LTA4H genotype predicted survival of human immunodeficiency virus (HIV)-uninfected patients, with TT-genotype patients significantly more likely to survive TBM than CC-genotype patients, according to Cox regression analysis (univariate P = .040 and multivariable P = .037). HIV-uninfected, TT-genotype patients had high CSF proinflammatory cytokine concentrations, with intermediate and lower concentrations in those with CT and CC genotypes. Increased CSF cytokine concentrations correlated with more-severe disease, but patients with low CSF leukocytes and cytokine concentrations were more likely to die from TBM. HIV infection independently predicted death due to TBM (hazard ratio, 3.94; 95% confidence interval, 2.79-5.56) and was associated with globally increased CSF cytokine concentrations, independent of LTA4H genotype. Conclusions: LTA4H genotype and HIV infection influence pretreatment inflammatory phenotype and survival from TBM. LTA4H genotype may predict adjunctive corticosteroid responsiveness in HIV-uninfected individuals.


Assuntos
Epóxido Hidrolases/genética , Infecções por HIV/microbiologia , Inflamação/microbiologia , Polimorfismo de Nucleotídeo Único , Tuberculose Meníngea/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Antirretroviral de Alta Atividade , Antituberculosos/uso terapêutico , Cérebro/patologia , Citocinas/líquido cefalorraquidiano , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação/virologia , Estimativa de Kaplan-Meier , Leucócitos/imunologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Mycobacterium tuberculosis , Modelos de Riscos Proporcionais , Análise de Sobrevida , Tuberculose Meníngea/complicações , Tuberculose Meníngea/tratamento farmacológico , Adulto Jovem
4.
Front Cell Infect Microbiol ; 10: 586101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194825

RESUMO

Macrophages play a significant role in preventing infection through antimicrobial activities, particularly acidification, and proteolysis. Mycobacterium tuberculosis (Mtb) infection can lead to diverse outcomes, from latent asymptomatic infection to active disease involving multiple organs. Monocyte-derived macrophage is one of the main cell types accumulating in lungs following Mtb infection. The variation of intracellular activities of monocyte-derived macrophages in humans and the influence of these activities on the tuberculosis (TB) spectrum are not well understood. By exploiting ligand-specific bead-based assays, we investigated macrophage antimicrobial activities real-time in healthy volunteers (n = 53) with 35 cases of latent TB (LTB), and those with active TB (ATB), and either pulmonary TB (PTB, n = 70) or TB meningitis (TBM, n = 77). We found wide person-to-person variations in acidification and proteolytic activities in response to both non-immunogenic IgG and pathogenic ligands comprising trehalose 6,6'-dimycolate (TDM) from Mtb or ß-glucan from Saccharamyces cerevisiase. The variation in the macrophage activities remained similar regardless of stimuli; however, IgG induced stronger acidification activity than immunogenic ligands TDM (P = 10-5, 3 × 10-5 and 0.01 at 30, 60, and 90 min) and ß-glucan (P = 10-4, 3 × 10-4 and 0.04 at 30, 60, and 90 min). Variation in proteolysis activity was slightly higher in LTB than in ATB (CV = 40% in LTB vs. 29% in ATB, P = 0.03). There was no difference in measured antimicrobial activities in response to TDM and bacterial killing in macrophages from LTB and ATB, or from PTB and TBM. Our results indicate that antimicrobial activities of monocyte-derived macrophages vary among individuals and show immunological dependence, but suggest these activities cannot be solely responsible for the control of bacterial replication or dissemination in TB.


Assuntos
Anti-Infecciosos , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30538956

RESUMO

It is uncertain whether differences in Mycobacterium tuberculosis (Mtb) virulence defined in vitro influence clinical tuberculosis pathogenesis, transmission, and mortality. We primarily used a macrophage lysis model to characterize the virulence of Mtb isolates collected from 153 Vietnamese adults with pulmonary tuberculosis. The virulence phenotypes were then investigated for their relationship with sputum bacterial load, bacterial lineages, bacterial growth, and cytokine responses in macrophages. Over 6 days of infection, 34 isolates (22.2%) showed low virulence (< 5% macrophages lysed), 46 isolates (30.1%) showed high virulence (≥90% lysis of macrophages), and 73 isolates (47.7%) were of intermediate virulence (5-90% macrophages lysed). Highly virulent isolates were associated with an increased bacterial load in patients' sputum before anti-tuberculosis therapy (P = 0.02). Isolate-dependent virulence phenotype was consistent in both THP-1 and human monocyte-derived macrophages. High virulence isolates survived better and replicated in macrophages one hundred fold faster than those with low virulence. Macrophages infected with high virulence isolates produced lower concentrations of TNF-α and IL-6 (P = 0.002 and 0.0005, respectively), but higher concentration of IL-1ß (P = 5.1 × 10-5) compared to those infected with low virulence isolates. High virulence was strongly associated with East Asian/Beijing lineage [P = 0.002, Odd ratio (OR) = 4.32, 95% confident intervals (CI) 1.68-11.13]. The association between virulence phenotypes, bacterial growth, and proinflammatory cytokines in macrophages suggest the suppression of certain proinflammatory cytokines (TNF-α and IL-6) but not IL-1ß allows better intracellular survival of highly virulent Mtb. This could result in rapid macrophage lysis and higher bacterial load in sputum of patients infected with high virulence isolates, which may contribute to the pathogenesis and success of the Beijing lineage.


Assuntos
Carga Bacteriana , Citocinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Adulto , Povo Asiático , Humanos , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Células THP-1 , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência
6.
Front Microbiol ; 8: 2296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209302

RESUMO

Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA