Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031005

RESUMO

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Assuntos
Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Microambiente Celular/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Células Dendríticas/patologia , Hexoquinase/genética , Hexoquinase/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
3.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
4.
Circ Res ; 130(1): 80-95, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34809444

RESUMO

BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.


Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Receptores de LDL/genética , Colesterol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Mutação , Proteínas Nucleares/genética , Receptores de LDL/metabolismo , Spliceossomos/metabolismo
5.
J Hepatol ; 79(4): 898-909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230231

RESUMO

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/cirurgia , Transcriptoma , Obesidade/complicações , Colesterol , Homeostase , Inflamação/complicações , Obesidade Mórbida/complicações
6.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
7.
Clin Chem Lab Med ; 58(2): 222-231, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31473684

RESUMO

Background Total blood calcium (TCa) is routinely used to diagnose and manage mineral and bone metabolism disorders. Numerous laboratories adjust TCa by albumin, though literature suggests there are some limits to this approach. Here we report a large retrospective study on agreement rate between ionized calcium (iCa) measurement and TCa or albumin-adjusted calcium measurements. Methods We retrospectively selected 5055 samples with simultaneous measurements of iCa, TCa, albumin and pH. We subgrouped our patients according to their estimated glomerular filtration rate (eGFR), albumin levels and pH. We analyzed each patient's calcium state with iCa as reference to determine agreement rate with TCa and albumin-adjusted calcium using Payne, Clase, Jain and Ridefelt formulas. Results The Payne formula performed poorly in patients with abnormal albumin, eGFR or pH levels. In patients with low albumin levels or blood pH disorders, Payne-adjusted calcium may overestimate the calcium state in up to 80% of cases. Similarly, TCa has better agreement with iCa in the case of hypoalbuminemia, but performed similarly to the Payne formula in patients with physiological albumin levels. The global agreement rate for Clase, Jain and Ridefelt formulas suggests significant improvement compared to Payne calcium adjustment but no significant improvement compared to TCa. Conclusions Total and albumin-adjusted calcium measurement leads to a misclassification of calcium status. Moreover, accurate calcium state determination depends on blood pH levels, whose measurement requires the same pre-analytical restrictions as iCa measurement. We propose that iCa should instead become the reference method to determine the real calcium state.


Assuntos
Cálcio/sangue , Albumina Sérica/química , Adulto , Idoso , Cálcio/normas , Técnicas Eletroquímicas , Eletrodos , Feminino , Taxa de Filtração Glomerular , Humanos , Concentração de Íons de Hidrogênio , Hipoalbuminemia/patologia , Íons/química , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Estudos Retrospectivos , Albumina Sérica/análise
8.
Annu Rev Physiol ; 78: 181-205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26667070

RESUMO

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders characterized by abnormal hepatic fat accumulation, inflammation, and hepatocyte dysfunction. Importantly, it is also closely linked to obesity and the metabolic syndrome. NAFLD predisposes susceptible individuals to cirrhosis, hepatocellular carcinoma, and cardiovascular disease. Although the precise signals remain poorly understood, NAFLD pathogenesis likely involves actions of the different hepatic cell types and multiple extrahepatic signals. The complexity of this disease has been a major impediment to the development of appropriate metrics of its progression and effective therapies. Recent clinical data place increasing importance on identifying fibrosis, as it is a strong indicator of hepatic disease-related mortality. Preclinical modeling of the fibrotic process remains challenging, particularly in the contexts of obesity and the metabolic syndrome. Future studies are needed to define the molecular pathways determining the natural progression of NAFLD, including key determinants of fibrosis and disease-related outcomes. This review covers the evolving concepts of NAFLD from both human and animal studies. We discuss recent clinical and diagnostic methods assessing NAFLD diagnosis, progression, and outcomes; compare the features of genetic and dietary animal models of NAFLD; and highlight pharmacological approaches for disease treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Progressão da Doença , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Síndrome Metabólica/patologia , Obesidade/patologia , Fatores de Risco
9.
Curr Opin Lipidol ; 30(3): 244-254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30893108

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to discuss the influence of obesity, insulin resistance, type 2 diabetes (T2D), and nonalcoholic fatty liver disease (NAFLD) on bile acid metabolism and to analyze whether these findings reinforce current beliefs about the role of bile acids in the pathophysiology of these diseases. RECENT FINDINGS: Discordant results on plasma bile acid alterations in NAFLD patients have been reported. Obesity, insulin resistance, and T2D, common comorbidities of NAFLD, have been associated with bile acid changes, but the individual bile acid species variations differ between studies (summarized in this review), perhaps because of clinicobiological differences between the studied patient populations and the heterogeneity of statistical analyses applied. SUMMARY: The regulatory role of bile acids in metabolic and cellular homeostasis renders bile acids attractive candidates as players in the pathophysiology of NAFLD. However, considering the complex relationship between NAFLD, obesity, insulin resistance and T2D, it is difficult to establish clear and independent associations between bile acid alterations and these individual diseases. Though bile acid alterations may not drive NAFLD progression, signaling pathways activated by bile acids remain potent therapeutic targets for its treatment. Further studies with appropriate matching or adjustment for potential confounding factors are necessary to determine which pathophysiological conditions drive the alterations in bile acid metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Humanos
10.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Gastroenterology ; 154(5): 1449-1464.e20, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277561

RESUMO

BACKGROUND & AIMS: The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS: We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1ß (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS: In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS: In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ritmo Circadiano , Inflamassomos/metabolismo , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosamina , Predisposição Genética para Doença , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/prevenção & controle , Fenótipo , Pirrolidinas/farmacologia , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Tiofenos/farmacologia , Fatores de Tempo , Transfecção
12.
Diabetologia ; 59(12): 2514-2517, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27695900

RESUMO

Oxidative stress has long been considered a key driving factor of many obesity-related health problems. However, recent work by Merry, Tran et al (Diabetologia DOI 10.1007/s00125-016-4084-3 ) challenges this idea with an interesting study using a hepatocyte-specific Gpx1-knockout (HGKO) mouse. GPX1 is an important detoxification enzyme that converts H2O2 to water. The authors found that high-fat diet-fed HGKO mice were more insulin sensitive than wildtype controls, despite elevated hepatic levels of H2O2 and evidence of increased systemic oxidative stress. When challenged with a non-alcoholic steatohepatitis (NASH)-inducing diet, HGKO mice were also protected, displaying reduced levels of inflammation and fibrosis with similar levels of steatosis compared with controls. These findings call into question the role of reactive oxygen species in NASH pathogenesis and highlight a potential paradox whereby increased H2O2 may be beneficial in some contexts.


Assuntos
Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Estresse Oxidativo/fisiologia , Animais , Glutationa Peroxidase/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glutationa Peroxidase GPX1
13.
J Lipid Res ; 55(7): 1465-77, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24868093

RESUMO

Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism.


Assuntos
Dolicóis/biossíntese , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Acetilação , Dolicóis/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
J Lipid Res ; 55(4): 659-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24516236

RESUMO

The liver plays a central role in metabolism and mediating insulin action. To dissect the effects of insulin on the liver in vivo, we have studied liver insulin receptor knockout (LIRKO) mice. Because LIRKO livers lack insulin receptors, they are unable to respond to insulin. Surprisingly, the most profound derangement observed in LIRKO livers by microarray analysis is a suppression of the cholesterologenic genes. Sterol regulatory element binding protein (SREBP)-2 promotes cholesterologenic gene transcription, and is inhibited by intracellular cholesterol. LIRKO livers show a slight increase in hepatic cholesterol, a 40% decrease in Srebp-2, and a 50-90% decrease in the cholesterologenic genes at the mRNA and protein levels. In control mice, SREBP-2 and cholesterologenic gene expression are suppressed by fasting and restored by refeeding; in LIRKO mice, this response is abolished. Similarly, the ability of statins to induce Srebp-2 and the cholesterologenic genes is lost in LIRKO livers. In contrast, ezetimibe treatment robustly induces Srepb-2 and its targets in LIRKO livers, raising the possibility that insulin may regulate SREBP-2 indirectly, by altering the accumulation or distribution of cholesterol within the hepatocyte. Taken together, these data indicate that cholesterol synthesis is a key target of insulin action in the liver.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fígado/metabolismo , Lovastatina/farmacologia , Receptor de Insulina/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Animais , Azetidinas/farmacologia , Vias Biossintéticas/genética , Colesterol/biossíntese , Ezetimiba , Jejum , Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Insulina/genética , Ativação Transcricional/efeitos dos fármacos , Transcriptoma
15.
J Biol Chem ; 288(14): 9915-9923, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23420847

RESUMO

The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy.


Assuntos
Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/fisiologia , Regulação Viral da Expressão Gênica , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/química , Animais , Antivirais/farmacologia , Capsídeo/química , Linhagem Celular , Genes Dominantes , Células HEK293 , Hepatite C/virologia , Humanos , Lentivirus/genética , Lipídeos/química , Camundongos , Microscopia de Fluorescência/métodos , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Triglicerídeos/química , Triglicerídeos/metabolismo , Proteínas não Estruturais Virais/fisiologia
16.
Metabolism ; 151: 155720, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926201

RESUMO

BACKGROUND AND AIMS: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS: In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS: FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Animais , Humanos , Camundongos , Progressão da Doença , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Doenças Metabólicas/metabolismo , PPAR alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
17.
Nat Commun ; 15(1): 7173, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169003

RESUMO

Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.


Assuntos
Tecido Adiposo , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Fator 15 de Diferenciação de Crescimento , Hepatócitos , Macrófagos , Obesidade , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Obesidade/metabolismo , Obesidade/patologia , Hepatócitos/metabolismo , Masculino , Macrófagos/metabolismo , Camundongos , Humanos , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Transdução de Sinais
18.
JHEP Rep ; 6(1): 100948, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125300

RESUMO

Background & Aims: Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers. Methods: Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers. Results: Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity. Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained. Impact and implications: This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.

19.
Gut Microbes ; 16(1): 2325067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445660

RESUMO

The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) infection. In the present study, we used high-resolution shotgun metagenomics and targeted metabolomic analysis to characterize influenza-associated changes in the composition and metabolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On D14, perturbation persisted in some species. Functional scale analysis of metagenomic data revealed transient changes in several metabolic pathways, particularly those leading to the production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon abundance and disease marker levels. In particular, IPA was positively correlated with some Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor to influenza outcomes and a potential biomarker of disease severity.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Influenza Humana , Humanos , Animais , Camundongos , Propionatos , Triptofano , Inflamação , Poliaminas
20.
Cell Metab ; 7(2): 125-34, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18249172

RESUMO

Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a standard chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced high-density lipoprotein (HDL) cholesterol and very low-density lipoprotein (VLDL) particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apolipoprotein B-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of Pgc-1 beta (Ppargc-1b), which promotes VLDL secretion, but decreased expression of Srebp-1c (Srebf1), Srebp-2 (Srebf2), and their targets, the lipogenic enzymes and the LDL receptor. Within 12 weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome.


Assuntos
Aterosclerose/etiologia , Dislipidemias/etiologia , Resistência à Insulina , Animais , Suscetibilidade a Doenças , Hipercolesterolemia/etiologia , Lipoproteínas/sangue , Hepatopatias , Camundongos , Camundongos Knockout , Receptor de Insulina/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA