Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(1): 183-193, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374974

RESUMO

The presence of amyloid fibrils of α-synuclein is closely associated with Parkinson's disease and related synucleinopathies. It is still very challenging, however, to systematically discover small molecules that prevent the formation of these aberrant aggregates. Here, we describe a structure-based approach to identify small molecules that specifically inhibit the surface-catalyzed secondary nucleation step in the aggregation of α-synuclein by binding to the surface of the amyloid fibrils. The resulting small molecules are screened using a range of kinetic and thermodynamic assays for their ability to bind α-synuclein fibrils and prevent the further generation of α-synuclein oligomers. This study demonstrates that the combination of structure-based and kinetic-based drug discovery methods can lead to the identification of small molecules that selectively inhibit the autocatalytic proliferation of α-synuclein aggregates.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Doença de Parkinson/metabolismo , Cinética , Proliferação de Células , Agregados Proteicos
2.
Proc Natl Acad Sci U S A ; 117(24): 13509-13518, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493749

RESUMO

Protein misfolding and aggregation is the hallmark of numerous human disorders, including Alzheimer's disease. This process involves the formation of transient and heterogeneous soluble oligomers, some of which are highly cytotoxic. A major challenge for the development of effective diagnostic and therapeutic tools is thus the detection and quantification of these elusive oligomers. Here, to address this problem, we develop a two-step rational design method for the discovery of oligomer-specific antibodies. The first step consists of an "antigen scanning" phase in which an initial panel of antibodies is designed to bind different epitopes covering the entire sequence of a target protein. This procedure enables the determination through in vitro assays of the regions exposed in the oligomers but not in the fibrillar deposits. The second step involves an "epitope mining" phase, in which a second panel of antibodies is designed to specifically target the regions identified during the scanning step. We illustrate this method in the case of the amyloid ß (Aß) peptide, whose oligomers are associated with Alzheimer's disease. Our results show that this approach enables the accurate detection and quantification of Aß oligomers in vitro, and in Caenorhabditis elegans and mouse hippocampal tissues.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anticorpos/imunologia , Agregados Proteicos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Especificidade de Anticorpos , Caenorhabditis elegans , Modelos Animais de Doenças , Epitopos , Hipocampo/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único
3.
Proc Natl Acad Sci U S A ; 115(41): 10245-10250, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30257937

RESUMO

To develop effective therapeutic strategies for protein misfolding diseases, a promising route is to identify compounds that inhibit the formation of protein oligomers. To achieve this goal, we report a structure-activity relationship (SAR) approach based on chemical kinetics to estimate quantitatively how small molecules modify the reactive flux toward oligomers. We use this estimate to derive chemical rules in the case of the amyloid beta peptide (Aß), which we then exploit to optimize starting compounds to curtail Aß oligomer formation. We demonstrate this approach by converting an inactive rhodanine compound into an effective inhibitor of Aß oligomer formation by generating chemical derivatives in a systematic manner. These results provide an initial demonstration of the potential of drug discovery strategies based on targeting directly the production of protein oligomers.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Descoberta de Drogas/métodos , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Humanos , Cinética , Fragmentos de Peptídeos/genética , Multimerização Proteica/efeitos dos fármacos , Deficiências na Proteostase/tratamento farmacológico , Rodanina/química , Rodanina/farmacologia
4.
Biomacromolecules ; 21(3): 1112-1125, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32011129

RESUMO

Alzheimer's disease is associated with the deposition of the amyloid-ß peptide (Aß) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aß scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aß40 by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aß40, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR). Both WT-TTR and M-TTR were found to inhibit specific steps of the process of Aß40 fibril formation, which are primary and secondary nucleations, without affecting the elongation of the resulting fibrils. Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aß40 oligomers formed in the aggregation reaction and inhibit their conversion into the shortest fibrils able to elongate. Using biophysical methods, TTR was found to change some aspects of its overall structure following such interactions with Aß40 oligomers, as well as with oligomers of Aß42, while maintaining its overall topology. Hence, it is likely that the predominant mechanism by which TTR exerts its protective role lies in the binding of TTR to the Aß oligomers and in inhibiting primary and secondary nucleation processes, which limits both the toxicity of Aß oligomers and the ability of the fibrils to proliferate.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Humanos , Substâncias Macromoleculares , Fragmentos de Peptídeos , Placa Amiloide , Pré-Albumina/genética
5.
Proc Natl Acad Sci U S A ; 114(30): 8005-8010, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28698377

RESUMO

The coaggregation of the amyloid-ß peptide (Aß) and α-synuclein is commonly observed in a range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. The complex interplay between Aß and α-synuclein has led to seemingly contradictory results on whether α-synuclein promotes or inhibits Aß aggregation. Here, we show how these conflicts can be rationalized and resolved by demonstrating that different structural forms of α-synuclein exert different effects on Aß aggregation. Our results demonstrate that whereas monomeric α-synuclein blocks the autocatalytic proliferation of Aß42 (the 42-residue form of Aß) fibrils, fibrillar α-synuclein catalyses the heterogeneous nucleation of Aß42 aggregates. It is thus the specific balance between the concentrations of monomeric and fibrillar α-synuclein that determines the outcome of the Aß42 aggregation reaction.


Assuntos
Peptídeos beta-Amiloides/metabolismo , alfa-Sinucleína/metabolismo , Humanos
6.
Proc Natl Acad Sci U S A ; 114(2): E200-E208, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011763

RESUMO

The aggregation of the 42-residue form of the amyloid-ß peptide (Aß42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aß42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aß42 aggregation that uses as a read-out the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aß42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.


Assuntos
Peptídeos beta-Amiloides/química , Descoberta de Drogas , Fragmentos de Peptídeos/química , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans , Líquido Cefalorraquidiano/química , Humanos , Fragmentos de Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas
7.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630615

RESUMO

Alzheimer's disease is associated with the aggregation of the amyloid-ß peptide (Aß), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aß aggregates induce neuronal dysfunction has highlighted the importance of the Aß oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aß oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aß (Aß40) as models of brain Aß oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aß40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aß40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aß oligomers.


Assuntos
Peptídeos beta-Amiloides/imunologia , Anticorpos/imunologia , Anticorpos/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Formação de Anticorpos/imunologia , Encéfalo/metabolismo , Desenho de Fármacos , Humanos , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Agregados Proteicos/fisiologia , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade
8.
Annu Rev Phys Chem ; 69: 273-298, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29490200

RESUMO

Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.


Assuntos
Amiloide/química , Simulação por Computador , Descoberta de Drogas , Humanos , Cinética , Dobramento de Proteína
9.
Biophys J ; 113(12): 2723-2735, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262365

RESUMO

Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure under physiological conditions in the absence of their biological partners and thus exist as dynamic ensembles of interconverting conformers, often highly soluble in water. However, in some cases, IDPs such as the ones involved in neurodegenerative diseases can form protein aggregates and their aggregation process may be triggered by the interaction with membranes. Although the interfacial behavior of globular proteins has been extensively studied, experimental data on IDPs at the air/water (A/W) and water/lipid interfaces are scarce. We studied here the intrinsically disordered C-terminal domain of the Hendra virus nucleoprotein (NTAIL) and compared its interfacial properties to those of lysozyme that is taken as a model globular protein of similar molecular mass. Adsorption of NTAIL at the A/W interface was studied in the absence and presence of phospholipids using Langmuir films, polarization modulated-infrared reflection-absorption spectroscopy, and an automated drop tensiometer for interfacial tension and elastic modulus determination with oscillating bubbles. NTAIL showed a significant surface activity, with a higher adsorption capacity at the A/W interface and penetration into egg phosphatidylcholine monolayer compared to lysozyme. Whereas lysozyme remains folded upon compression of the protein layer at the A/W interface and shows a quasi-pure elastic behavior, NTAIL shows a much higher molecular area and forms a highly viscoelastic film with a high dilational modulus. To our knowledge, a new disorder-to-order transition is thus observed for the NTAIL protein that folds into an antiparallel ß-sheet at the A/W interface and presents strong intermolecular interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Adsorção , Ar , Muramidase/química , Proteínas do Nucleocapsídeo , Fosfatidilcolinas/química , Conformação Proteica , Água/química
10.
Chembiochem ; 16(2): 268-76, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25492314

RESUMO

We provide an atomic-resolution description based on NMR spectroscopy, of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein (NTAIL ), both in its isolated state and within the nucleocapsid (NC). Within the NC the second half of NTAIL retains conformational behavior similar to that of isolated NTAIL , whereas the first half of NTAIL becomes much more rigid. In spite of the mostly disordered nature of NTAIL , chemical shifts and relaxation measurements show a significant degree of α-helical sampling in the molecular recognition element (MoRE) involved in binding to the X domain (XD) of the phosphoprotein, with this preconfiguration being more pronounced than in the NTAIL domain from the cognate Hendra virus. Outside the MoRE, an additional region exhibiting reduced flexibility was identified within NTAIL and found to be involved in binding to the XD. (1) H- and (13) C-detected titration NMR experiments support a highly dynamic binding of NTAIL at the surface of the XD.


Assuntos
Vírus Nipah/química , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas Virais/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo
11.
PLoS Pathog ; 9(9): e1003631, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086133

RESUMO

Hendra virus (HeV) is a recently emerged severe human pathogen that belongs to the Henipavirus genus within the Paramyxoviridae family. The HeV genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid. Recruitment of the viral polymerase onto the nucleocapsid template relies on the interaction between the C-terminal domain, N(TAIL), of N and the C-terminal X domain, XD, of the polymerase co-factor phosphoprotein (P). Here, we provide an atomic resolution description of the intrinsically disordered N(TAIL) domain in its isolated state and in intact nucleocapsids using nuclear magnetic resonance (NMR) spectroscopy. Using electron microscopy, we show that HeV nucleocapsids form herringbone-like structures typical of paramyxoviruses. We also report the crystal structure of XD of P that consists of a three-helix bundle. We study the interaction between N(TAIL) and XD using NMR titration experiments and provide a detailed mapping of the reciprocal binding sites. We show that the interaction is accompanied by α-helical folding of the molecular recognition element of N(TAIL) upon binding to a hydrophobic patch on the surface of XD. Finally, using solution NMR, we investigate the interaction between intact nucleocapsids and XD. Our results indicate that monomeric XD binds to N(TAIL) without triggering an additional unwinding of the nucleocapsid template. The present results provide a structural description at the atomic level of the protein-protein interactions required for transcription and replication of HeV, and the first direct observation of the interaction between the X domain of P and intact nucleocapsids in Paramyxoviridae.


Assuntos
Vírus Hendra/química , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , Cristalografia por Raios X , Vírus Hendra/genética , Vírus Hendra/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Adv Exp Med Biol ; 870: 351-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26387109

RESUMO

In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Paramyxoviridae/química , Paramyxoviridae/fisiologia , Proteínas Virais/química , Replicação Viral , Conformação Proteica
13.
Int J Mol Sci ; 16(7): 15688-726, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26184170

RESUMO

We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.


Assuntos
Nucleoproteínas/química , Paramyxovirinae/metabolismo , Fosfoproteínas/química , Proteínas Virais/química , Espectroscopia de Ressonância de Spin Eletrônica , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Difração de Raios X
14.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1589-603, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914970

RESUMO

The structures of two constructs of the measles virus (MeV) phosphoprotein (P) multimerization domain (PMD) are reported and are compared with a third structure published recently by another group [Communie et al. (2013), J. Virol. 87, 7166-7169]. Although the three structures all have a tetrameric and parallel coiled-coil arrangement, structural comparison unveiled considerable differences in the quaternary structure and unveiled that the three structures suffer from significant structural deformation induced by intermolecular interactions within the crystal. These results show that crystal packing can bias conclusions about function and mechanism based on analysis of a single crystal structure, and they challenge to some extent the assumption according to which coiled-coil structures can be reliably predicted from the amino-acid sequence. Structural comparison also highlighted significant differences in the extent of disorder in the C-terminal region of each monomer. The differential flexibility of the C-terminal region is also supported by size-exclusion chromatography and small-angle X-ray scattering studies, which showed that MeV PMD exists in solution as a dynamic equilibrium between two tetramers of different compaction. Finally, the possible functional implications of the flexibility of the C-terminal region of PMD are discussed.


Assuntos
Biopolímeros/química , Vírus do Sarampo/química , Fosfoproteínas/química , Proteínas Virais/química , Dicroísmo Circular , Cristalografia por Raios X , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
15.
Phys Chem Chem Phys ; 16(9): 4202-9, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24452480

RESUMO

Site Directed Spin Labeling (SDSL) combined with EPR spectroscopy is a very powerful approach to investigate structural transitions in proteins in particular flexible or even disordered ones. Conventional spin labels are based on nitroxide derivatives leading to classical 3-line spectra whose spectral shapes are indicative of the environment of the labels and thus constitute good reporters of structural modifications. However, the similarity of these spectral shapes precludes probing two regions of a protein or two partner proteins simultaneously. To overcome the limitation due to the weak diversity of nitroxide label EPR spectral shapes, we designed a new spin label based on a ß-phosphorylated nitroxide giving 6-line spectra. This paper describes the synthesis of this new spin label, its grafting at four different positions of a model disordered protein able to undergo an induced α-helical folding and its characterization by EPR spectroscopy. For comparative purposes, a classical nitroxide has been grafted at the same positions of the model protein. The ability of the new label to report on structural transitions was evaluated by analyzing the spectral shape modifications induced either by the presence of a secondary structure stabilizer (trifluoroethanol) or by the presence of a partner protein. Taken together the results demonstrate that the new phosphorylated label gives a very distinguishable signature which is able to report from subtle to larger structural transitions, as efficiently as the classical spin label. As a complementary approach, molecular dynamics (MD) calculations were performed to gain further insights into the binding process between the labeled NTAIL and PXD. MD calculations revealed that the new label does not disturb the interaction between the two partner proteins and reinforced the conclusion on its ability to probe different local environments in a protein. Taken together this study represents an important step forward in the extension of the panoply of SDSL-EPR approaches.


Assuntos
Óxidos de Nitrogênio/química , Proteínas/química , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Fosforilação , Estrutura Secundária de Proteína , Proteínas/metabolismo , Marcadores de Spin , Trifluoretanol/química
16.
ACS Chem Neurosci ; 15(6): 1125-1134, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38416693

RESUMO

Oligomeric assemblies of the amyloid ß peptide (Aß) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aß40 (the 40-residue form of Aß) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aß40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer's disease by the stabilization of Aß oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Metais , Íons , Fragmentos de Peptídeos/química
17.
Chem Sci ; 15(19): 7229-7242, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756798

RESUMO

The central hallmark of Parkinson's disease pathology is the aggregation of the α-synuclein protein, which, in its healthy form, is associated with lipid membranes. Purified monomeric α-synuclein is relatively stable in vitro, but its aggregation can be triggered by the presence of lipid vesicles. Despite this central importance of lipids in the context of α-synuclein aggregation, their detailed mechanistic role in this process has not been established to date. Here, we use chemical kinetics to develop a mechanistic model that is able to globally describe the aggregation behaviour of α-synuclein in the presence of DMPS lipid vesicles, across a range of lipid and protein concentrations. Through the application of our kinetic model to experimental data, we find that the reaction is a co-aggregation process involving both protein and lipids and that lipids promote aggregation as much by enabling fibril elongation as by enabling their initial formation. Moreover, we find that the primary nucleation of lipid-protein co-aggregates takes place not on the surface of lipid vesicles in bulk solution but at the air-water and/or plate interfaces, where lipids and proteins are likely adsorbed. Our model forms the basis for mechanistic insights, also in other lipid-protein co-aggregation systems, which will be crucial in the rational design of drugs that inhibit aggregate formation and act at the key points in the α-synuclein aggregation cascade.

18.
J Biol Chem ; 287(15): 11951-67, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22318731

RESUMO

The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.


Assuntos
Vírus do Sarampo/fisiologia , Proteínas do Nucleocapsídeo/química , Fosfoproteínas/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Chlorocebus aethiops , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Regulação Viral da Expressão Gênica , Genoma Viral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Vírus do Sarampo/enzimologia , Vírus do Sarampo/genética , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Fosfoproteínas/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transcrição Gênica , Células Vero , Carga Viral , Vírion/metabolismo , Replicação Viral
19.
ACS Chem Neurosci ; 14(4): 657-666, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728544

RESUMO

Alzheimer's disease is characterized by the presence in the brain of amyloid plaques formed by the aberrant deposition of the amyloid-ß peptide (Aß). Since many vitamins are dysregulated in this disease, we explored whether these molecules contribute to the protein homeostasis system by modulating Aß aggregation. By screening 18 fat-soluble and water-soluble vitamin metabolites, we found that retinoic acid and α-tocopherol, two metabolites of vitamin A and vitamin E, respectively, affect Aß aggregation both in vitro and in a Caenorhabditis elegans model of Aß toxicity. We then show that the effects of these two vitamin metabolites in specific combinations cancel each other out, consistent with the "resilience in complexity" hypothesis, according to which the complex composition of the cellular environment could have an overall protective role against protein aggregation through the simultaneous presence of aggregation promoters and inhibitors. Taken together, these results indicate that vitamins can be added to the list of components of the protein homeostasis system that regulate protein aggregation.


Assuntos
Doença de Alzheimer , Vitamina A , Animais , Vitamina E/farmacologia , Vitamina E/metabolismo , Agregados Proteicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Vitaminas/farmacologia , Vitaminas/metabolismo , Vitamina K/metabolismo , Caenorhabditis elegans
20.
J Biol Chem ; 286(15): 13583-602, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21317293

RESUMO

The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the µM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.


Assuntos
Henipavirus/química , Modelos Moleculares , Nucleoproteínas/química , Fosfoproteínas/química , Proteínas Virais/química , Henipavirus/genética , Nucleoproteínas/genética , Fosfoproteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA