Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 37: 549-573, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613819

RESUMO

The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.


Assuntos
Tecido Adiposo , Obesidade , Homeostase , Humanos , Obesidade/genética
2.
Immunity ; 57(1): 141-152.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091996

RESUMO

Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.


Assuntos
Tecido Adiposo Marrom , Leptina , Animais , Humanos , Camundongos , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Interleucina-33/genética , Interleucina-33/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Termogênese/fisiologia
3.
Immunity ; 52(6): 900-902, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553178

RESUMO

The hypothalamic-pituitary-adrenal axis modulates immunity in response to stress. In a recent report in the May 14, 2020 issue of Nature, Zhang et al. use optogenetic tools to investigate whether the splenic immune response is directly controlled by descending neuronal circuits activated in response to stress.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Encéfalo , Imunidade Humoral , Neurônios
4.
Stem Cell Reports ; 14(5): 940-955, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32359446

RESUMO

The Parkinson's disease-associated gene, LRRK2, is also associated with immune disorders and infectious disease and is expressed in immune subsets. Here, we characterize a platform for interrogating the expression and function of endogenous LRRK2 in authentic human phagocytes using human induced pluripotent stem cell-derived macrophages and microglia. Endogenous LRRK2 is expressed and upregulated by interferon-γ in these cells, including a 187-kDa cleavage product. Using LRRK2 knockout and G2019S isogenic repair lines, we find that LRRK2 is not involved in initial phagocytic uptake of bioparticles but is recruited to LAMP1+/RAB9+ "maturing" phagosomes, and LRRK2 kinase inhibition enhances its residency at the phagosome. Importantly, LRRK2 is required for RAB8a and RAB10 recruitment to phagosomes, implying that LRRK2 operates at the intersection between phagosome maturation and recycling pathways in these professional phagocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Interferon gama/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Macrófagos/citologia , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA