Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900840

RESUMO

BACKGROUND AND AIMS: Cycad is a key lineage to understand the early evolution of seed plants and their response to past environmental changes. However, tracing the evolutionary trajectory of cycad species is challenging when the robust relationships at inter- or infrageneric level are not well resolved. METHODS: Here, using 2,901 single-copy nuclear genes, we explored the species relationships and gene flow within the second largest genus of cycads, i.e., Zamia, based on phylotranscriptomic analyses of 90% extant Zamia species. Based on a well-resolved phylogenetic framework, we performed gene flow analyses, molecular dating, and biogeographical reconstruction to examine the spatiotemporal evolution of Zamia. We also performed ancestral state reconstruction (ASR) of a total of 62 traits of the genus to comprehensively investigate its morphological evolution. KEY RESULTS: Zamia is comprised of seven major clades corresponding to seven distinct distribution areas in the Americas, with at least three reticulation nodes revealed in this genus. Extant lineages of Zamia initially diversified around 18.4-32.6 (29.14) million years ago (MA) in the Mega-Mexico, and then expanded eastward into the Caribbean and southward into Central and South America. ASR revealed homoplasy in most of the morphological characters. CONCLUSIONS: This study revealed congruent phylogenetic relationships from comparative methods/datasets, with some conflicts being the result of incomplete lineage sorting and ancient/recent hybridization events. The strong association between the clades and the biogeographic areas suggested that ancient dispersal events shaped the modern distribution pattern, and regional climatic factors may have resulted in the following in-situ diversification. Climate cooling starting during the mid Miocene is associated with the global expansion of Zamia to the tropical South America that have dramatically driven lineage diversification in the New World flora, as well as the extinction of cycad species in the nowadays cooler regions of both hemispheres as indicated by the fossil records.

2.
Ann Bot ; 130(5): 671-685, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36111957

RESUMO

BACKGROUND AND AIMS: Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. METHODS: We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. KEY RESULTS: The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5-6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. CONCLUSIONS: This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus.


Assuntos
Cycadopsida , Zamiaceae , Filogenia , Teorema de Bayes , Austrália , Evolução Molecular
3.
Cladistics ; 37(6): 803-815, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34841588

RESUMO

Biodiversity exchanges across the Malesian region, linking the distinct biotas of Asia and Australia, have long attracted the curiosity of biologists. Tetrastigma (Vitaceae) has a wide distribution in Asia through the Sunda archipelago to Australia and provides a good case to elucidate floristic exchange between Asia and Australia. Tetrastigma species have fleshy fruits that are consumed by birds, representing a lineage with a predictable dispersal across island chains. We herein estimate the divergence times and reconstruct the biogeographic history of Tetrastigma with intensive taxon sampling (96 of approximately 120 species; >80%) using 10 chloroplast loci. The biogeographic history of Tetrastigma was reconstructed with 4-area and 6-area divisions by delineating the Sunda region into one or three areas of endemism based on a phylogenetic bioregionalization analysis and the geological history of Malesia. The 4-area division shows that Tetrastigma originated in continental Asia and diverged from the recently segregated genus Pseudocayratia in the early Eocene (49.43 Ma). Dispersal from continental Asia might have started in the late Eocene but mainly occurred in the last 10 Myr. Continental Asia is indicated to be the most important source area while Sunda is the biggest sink, with 16 of the 27 dispersal events inferred from continental Asia to Sunda. Only seven dispersal events are inferred arriving in the Sahul plate and one reverse dispersal from Sahul back to Asia. The 6-area division suggests that the Philippines have been an active junction between Asia and Australia. The biogeographic history of Tetrastigma illustrates an asymmetric floristic exchange between Asia and Australia in this genus, which has been facilitated by the formation of terrestrial connections in the late Miocene and the expansion of wet tropical forests across Wallace's Line and beyond.


Assuntos
Vitaceae , Ásia , Austrália , Cloroplastos/genética , DNA de Cloroplastos , Filogeografia , Dispersão Vegetal , Vitaceae/classificação , Vitaceae/genética
4.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771563

RESUMO

Ceratozamia Brongn. is one of the species-rich genera of Cycadales comprising 38 species that are mainly distributed in Mexico, with a few species reported from neighboring regions. Phylogenetic relationships within the genus need detailed investigation based on extensive datasets and reliable systematic approaches. Therefore, we used 30 of the known 38 species to reconstruct the phylogeny based on transcriptome data of 3954 single-copy nuclear genes (SCGs) via coalescent and concatenated approaches and three comparative datasets (nt/nt12/aa). Based on all these methods, Ceratozamia is divided into six phylogenetic subclades within three major clades. There were a few discrepancies regarding phylogenetic position of some species within these subclades. Using these phylogenetic trees, biogeographic history and morphological diversity of the genus are explored. Ceratozamia originated from ancestors in southern Mexico since the mid-Miocene. There is a distinct distribution pattern of species through the Trans-Mexican Volcanic Belt (TMVB), that act as a barrier for the species dispersal at TMVB and its southern and northern part. Limited dispersal events occurred during the late Miocene, and maximum diversification happened during the Pliocene epoch. Our study provides a new insight into phylogenetic relationships, the origin and dispersal routes, and morphological diversity of the genus Ceratozamia. We also explain how past climatic changes affected the diversification of this Mesoamerica-native genus.

5.
Nat Plants ; 8(4): 389-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437001

RESUMO

Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.


Assuntos
Cycas , Cycadopsida/genética , Cycas/genética , Genes de Plantas , Ginkgo biloba/genética , Filogenia , Sementes/genética
6.
PLoS One ; 16(7): e0255091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293066

RESUMO

Mitochondrial genomes of vascular plants are well known for their liability in architecture evolution. However, the evolutionary features of mitogenomes at intra-generic level are seldom studied in vascular plants, especially among gymnosperms. Here we present the complete mitogenome of Cycas debaoensis, an endemic cycad species to the Guangxi region in southern China. In addition to assemblage of draft mitochondrial genome, we test the conservation of gene content and mitogenomic stability by comparing it to the previously published mitogenome of Cycas taitungensis. Furthermore, we explored the factors such as structural rearrangements and nuclear surveillance of double-strand break repair (DSBR) proteins in Cycas in comparison to other vascular plant groups. The C. debaoensis mitogenome is 413,715 bp in size and encodes 69 unique genes, including 40 protein coding genes, 26 tRNAs, and 3 rRNA genes, similar to that of C. taitungensis. Cycas mitogenomes maintained the ancestral intron content of seed plants (26 introns), which is reduced in other lineages of gymnosperms, such as Ginkgo biloba, Taxus cuspidata and Welwitschia mirabilis due to selective pressure or retroprocessing events. C. debaoensis mitogenome holds 1,569 repeated sequences (> 50 bp), which partially account for fairly large intron size (1200 bp in average) of Cycas mitogenome. The comparison of RNA-editing sites revealed 267 shared non-silent editing site among predicted vs. empirically observed editing events. Another 33 silent editing sites from empirical data increase the total number of editing sites in Cycas debaoensis mitochondrial protein coding genes to 300. Our study revealed unexpected conserved evolution between the two Cycas species. Furthermore, we found strict collinearity of the gene order along with the identical set of genomic content in Cycas mt genomes. The stability of Cycas mt genomes is surprising despite the existence of large number of repeats. This structural stability may be related to the relative expansion of three DSBR protein families (i.e., RecA, OSB, and RecG) in Cycas nuclear genome, which inhibit the homologous recombinations, by monitoring the accuracy of mitochondrial chromosome repair.


Assuntos
Cycas/genética , Evolução Molecular , Genoma Mitocondrial , Sequência de Bases , Núcleo Celular/genética , Mapeamento Cromossômico , Ordem dos Genes , Genes Mitocondriais , Genes de Plantas , Tamanho do Genoma , Instabilidade Genômica , Íntrons/genética , Filogenia , Plastídeos/genética , Edição de RNA/genética , Recombinação Genética/genética , Sequências de Repetição em Tandem/genética
7.
Microsc Res Tech ; 83(12): 1574-1584, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32757348

RESUMO

Microbial mediated synthesis of metallic nanoparticles constitutes as effective and promising approach for the development of antibacterial materials in the field of bioengineering and biomedicine. We prepared Cadmium oxide nanoaprticles (CdO NPs) utilizing Penicillium oxalicum, and cadmium acetate solution via coprecipitate method. The elemental composition and morphology of these synthesized CdO NPs were examined through X-ray diffraction (XRD), UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy dispersive spectroscopy (EDS). Furthermore, we evaluated the bactericidal potential of prepared CdO NPs using Escherichia coli (E.coli), Staphylococcus aureus (S.aureus), Bacillus cereus (B.cereus), and Pseudomonas aeruginosa (P. aeruginosa). Dimethyl sulfoxide was used as negative control while erythromycin was used as positive control. The XRD spectrum revealed cubic crystalline nanoparticles with 22.94 nm size and UV showed absorbance peak at 297 nm with 2.5 eV band gap energy. FTIR depicted O─H and carboxylic groups along with CdO stretching vibration. EDS showed the presence of organic compounds on Cd and O over NPs surface. SEM results revealed the spherical shape of the CdO NPs. The synthesized NPs exhibited highly potent bactericidal activity against selected strains and demonstrated less optical density of 0.086 after 24 hr. Owing to the significant antibacterial activity of CdO NPs, the broad application prospects of these nanoparticles CdO NPs in extensive biomedical applications is indicated.


Assuntos
Compostos de Cádmio , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Óxidos/farmacologia , Penicillium , Extratos Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Front Plant Sci ; 8: 590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491066

RESUMO

Tetrastigma (Miq.) Planch. is one of the most species-rich genera of the economically and agronomically important grape family Vitaceae. It includes ca. 95 species widely distributed in the tropics and subtropics of Asia and Australia. Species of Tetrastigma exhibit great diversity in both vegetative and reproductive characters. Here we inferred a well-supported phylogeny of Tetrastigma based on ten chloroplast DNA regions with an expanded taxon sampling of 72 species and two varieties. Our molecular results support six major clades within Tetrastigma and the relationships among these clades were well-resolved. We also documented seed morphology of 44 species covering the six major clades of the genus. Ancestral states of eight characters (seed shape, seed surface rumination pattern, chalaza length/width ratio, chalaza position, ventral infold position, ventral infold divergence, ventral infold depth in cross section, and endosperm shape) were reconstructed in Mesquite and R with four models. Character optimizations suggest that all character states have evolved multiple times except that the irregular-shaped surface rumination has derived only once in Tetrastigma. We evaluated the taxonomic importance of seed morphology and identified potential morphological evidence to support each major clade. Our comprehensive analyses of Tetrastigma shed insights into the infrageneric classification of this morphologically diverse and ecologically important genus in tropical and subtropical Asia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA