Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2118227119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238645

RESUMO

SignificanceHost-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Catecolaminas/fisiologia , Fatores Quimiotáticos/fisiologia , Quimiotaxia/fisiologia , Vibrio/fisiologia , Catecóis/química , Fatores Quimiotáticos/metabolismo , Ferro/análise , Sondas Moleculares/química , Ligação Proteica , Proteômica/métodos , Transdução de Sinais
2.
Nature ; 603(7902): 583-584, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288683
3.
Angew Chem Int Ed Engl ; 62(31): e202304533, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37249408

RESUMO

The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid (LA) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA-based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs (LAMe and C3) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 µM, making it the most effective LPL inhibitor reported to date.


Assuntos
Parasitos , Animais , Humanos , Proteômica , Plasmodium falciparum , Bactérias , Eritrócitos
4.
Angew Chem Int Ed Engl ; 59(7): 2829-2836, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31782878

RESUMO

Rapid development of bacterial resistance has led to an urgent need to find new druggable targets for antibiotics. In this context, residue-specific chemoproteomic approaches enable proteome-wide identification of binding sites for covalent inhibitors. Described here are easily synthesized isotopically labeled desthiobiotin azide (isoDTB) tags that shortened the chemoproteomic workflow and allowed an increased coverage of cysteines in bacterial systems. They were used to quantify 59 % of all cysteines in essential proteins in Staphylococcus aureus and enabled the discovery of 88 cysteines that showed high reactivity, which correlates with functional importance. Furthermore, 268 cysteines that are engaged by covalent ligands were identified. Inhibition of HMG-CoA synthase was verified and will allow addressing the bacterial mevalonate pathway through a new target. Overall, a broad map of the bacterial cysteinome was obtained, which will facilitate the development of antibiotics with novel modes-of-action.


Assuntos
Azidas/química , Biotina/análogos & derivados , Cisteína/análise , Staphylococcus aureus/química , Biotina/química , Marcação por Isótopo , Estrutura Molecular
5.
Chembiochem ; 18(17): 1707-1711, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28643453

RESUMO

The tumor suppressor Fhit and its substrate diadenosine triphosphate (Ap3 A) are important factors in cancer development and progression. Fhit has Ap3 A hydrolase activity and cleaves Ap3 A into adenosine monophosphate (AMP) and adenosine diphosphate (ADP); this is believed to terminate Fhit-mediated signaling. How the catalytic activity of Fhit is regulated and how the Fhit⋅Ap3 A complex might exert its growth-suppressive function remain to be discovered. Small-molecule inhibitors of the enzymatic activity of Fhit would provide valuable tools for the elucidation of its tumor-suppressive functions. Here we describe the development of a high-throughput screen for the identification of such small-molecule inhibitors of Fhit. Two clusters of inhibitors that decreased the activity of Fhit by at least 90 % were identified. Several derivatives were synthesized and exhibited in vitro IC50 values in the nanomolar range.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Hidrolases Anidrido Ácido/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Concentração Inibidora 50 , Proteínas de Neoplasias/antagonistas & inibidores , Ligação Proteica , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/toxicidade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade
6.
Chembiochem ; 18(4): 378-381, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27935244

RESUMO

Monitoring the activity of ATP-consuming enzymes provides the basis for elucidating their modes of action and regulation. Although a number of ATP analogues have been developed for this, their scope is restricted because of the limited acceptance by respective enzymes. In order to clarify which kind of phosphate-modified ATP analogues are accepted by the α-ß-phosphoanhydride-cleaving ubiquitin-activating enzyme 1 (UBA1) and the ß-γ-phosphoanhydride-cleaving focal adhesion kinase (FAK), we tested phosphoramidate- and phosphoester-modified ATP analogues. UBA1 and FAK were able to convert phosphoramidate-modified ATP analogues, even with a bulky modification like biotin. In contrast, a phosphoester-modified analogue was poorly accepted. These results demonstrate that minor variations in the design of ATP analogues for monitoring ATP utilization have a significant impact on enzymatic acceptance.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Amidas/química , Enzimas/metabolismo , Ésteres/química , Ácidos Fosfóricos/química , Estrutura Molecular , Especificidade por Substrato , Ubiquitinação
7.
Biol Chem ; 403(4): 361-362, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35245006
8.
Angew Chem Int Ed Engl ; 53(38): 10247-50, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25098403

RESUMO

Cancer is a leading cause of death worldwide. Functional inactivation of tumor suppressor proteins, mainly by mutations in the corresponding genes, is a key event in cancer development. The fragile histidine triade protein (Fhit) is a tumor suppressor that is frequently affected in different cancer types. Fhit possesses diadenosine triphosphate hydrolase activity, but although reduction of its enzymatic activity appears to be important for exerting its tumor suppressor function, the regulation of Fhit activity is poorly understood. Here, we introduce a novel fluorogenic probe that is suited to selectively analyze the enzymatic activity of Fhit in extracts derived from human cells. This novel method will allow in-depth insight into the mechanisms involved in Fhit regulation in biologically relevant setups and, thus, into its role in the development of cancer.


Assuntos
Hidrolases Anidrido Ácido/análise , Hidrolases Anidrido Ácido/metabolismo , Genes Supressores de Tumor , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Hidrolases Anidrido Ácido/genética , Ativação Enzimática , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas de Neoplasias/genética
9.
J Med Chem ; 67(10): 7935-7953, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38713163

RESUMO

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.


Assuntos
Proteína Desglicase DJ-1 , Proteólise , Compostos de Boro/farmacologia , Compostos de Boro/química , Compostos de Boro/síntese química , Proteína Desglicase DJ-1/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
10.
Org Biomol Chem ; 11(48): 8298-305, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24173528

RESUMO

Adenosine triphosphate (ATP) analogues labelled with two dyes suitable for undergoing Förster Resonance Energy Transfer (FRET) have the potential to be valuable tools to continuously study the enzymatic activity of ATP consuming enzymes. Here, we present a synthesis strategy that allows obtaining these ATP analogues in a straight-forward manner. Earlier studies indicate that modifying ATP at the O2'- and the γ-position is a very promising starting point for the design of these probes. We synthesized probes modified with five different combinations of dyes attached to these positions and investigated their fluorescence characteristics in the non-cleaved state as well as after enzymatic hydrolysis. All presented probes largely change their fluorescence characteristics upon cleavage. They include ratiometric FRET probes as well as dark quenched analogues. For typical in vitro applications a combination of the sulfonated polymethine dyes Sulfo-Cy3 and Sulfo-Cy5 seems to be most promising due to their excellent solubility in aqueous buffer and a large change of fluorescence characteristics upon cleavage. For this combination of dyes we also synthesized analogues modified at the γ- and the C2- or the O3'-position, respectively, as these attachment sites are also well accepted by certain ATP consuming enzymes. These analogues show comparably large changes in fluorescence characteristics. Overall, we present new ATP-based FRET probes that have the potential to enable monitoring the enzymatic activity of ATP consuming enzymes.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Trifosfato de Adenosina/metabolismo , Carbocianinas/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/metabolismo , Hidrólise
11.
Chem Sci ; 14(32): 8635-8643, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592978

RESUMO

Catechol-containing natural products are common constituents of foods, drinks, and drugs. Natural products carrying this motif are often associated with beneficial biological effects such as anticancer activity and neuroprotection. However, the molecular mode of action behind these properties is poorly understood. Here, we apply a mass spectrometry-based competitive chemical proteomics approach to elucidate the target scope of catechol-containing bioactive molecules from diverse foods and drugs. Inspired by the protein reactivity of catecholamine neurotransmitters, we designed and synthesised a broadly reactive minimalist catechol chemical probe based on dopamine. Initial labelling experiments in live human cells demonstrated broad protein binding by the probe, which was largely outcompeted by its parent compound dopamine. Next, we investigated the competition profile of a selection of biologically relevant catechol-containing substances. With this approach, we characterised the protein reactivity and the target scope of dopamine and ten biologically relevant catechols. Strikingly, proteins associated with the endoplasmic reticulum (ER) were among the main targets. ER stress assays in the presence of reactive catechols revealed an activation of the unfolded protein response (UPR). The UPR is highly relevant in oncology and cellular resilience, which may provide an explanation of the health-promoting effects attributed to many catechol-containing natural products.

12.
J Org Chem ; 77(22): 10450-4, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23088633

RESUMO

Nucleotides modified at the phosphate have numerous applications. Nevertheless, the number of attachment modes is limited and little is known about their stability. Here, we present results on the elaboration of the synthesis of five classes of ATP analogues and studies concerning their stability. We show that the nitrogen-linked ATP analogue is less stable, whereas the oxygen- and novel carbon-linked adenosine tri- and tetraphosphate analogues are stable from pH 3 to 12 rendering them interesting for further applications and designs.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/síntese química , Nucleotídeos/química , Organofosfatos/química , Organofosfatos/síntese química , Estrutura Molecular
13.
Chem Commun (Camb) ; 58(36): 5526-5529, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420608

RESUMO

With the idea of exploiting metal templated C-S bond forming reactions to achieve modification of cysteines in bacterial proteins, a cyclometalated Au(III) compound was explored in a competitive chemoproteomic approach in S. aureus cell extracts. More than 100 ligandable cysteines were identified, of which more than 50% were not engaged by organic α-chloroacetamides in a previous study, indicating that organometallic compounds expand the ligandable space in bacteria. A selected interaction was validated using an enzyme activity assay, and intact protein mass spectrometry showed cysteine arylation of an unprecedented target. The obtained results demonstrate that this family of organogold compounds has potential for therapeutic protein targeting via selective, covalent modification of cysteine residues in bacteria.


Assuntos
Cisteína , Staphylococcus aureus , Cisteína/química , Compostos Organoáuricos/química
14.
RSC Chem Biol ; 3(10): 1216-1229, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320884

RESUMO

Covalently acting compounds experience a strong interest within chemical biology both as molecular probes in studies of fundamental biological mechanisms and/or as novel drug candidates. In this context, the identification of new classes of reactive groups is particularly important as these can expose novel reactivity modes and, consequently, expand the ligandable proteome. Here, we investigated the electrophilic reactivity of the 3-acyl-5-hydroxy-1,5-dihydro-2H-pyrrole-2-one (AHPO) scaffold, a heterocyclic motif that is e.g. present in various bioactive natural products. Our investigations were focused on the compound MT-21 - a simplified structural analogue of the natural product epolactaene - which is known to have both neurotrophic activity and ability to trigger apoptotic cell death. We found that the central N-acyl hemiaminal group of MT-21 can function as an electrophilic centre enabling divergent reactivity with both amine- and thiol-based nucleophiles, which furthermore translated to reactivity with proteins in both cell lysates and live cells. We found that in live cells MT-21 strongly engaged the lipid transport protein fatty acid-binding protein 5 (FABP5) by direct binding to a cysteine residue in the bottom of the ligand binding pocket. Through preparation of a series of MT-21 derivatives, we probed the specificity of this interaction which was found to be strongly dependent on subtle structural changes. Our study suggests that MT-21 may be employed as a tool compound in future studies of the biology of FABP5, which remains incompletely understood. Furthermore, our study has also made clear that other natural products containing the AHPO-motif may likewise possess covalent reactivity and that this property may underlie their biological activity.

15.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535493

RESUMO

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Assuntos
Antineoplásicos , Redutases-Desidrogenases de Cadeia Curta , Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático , Humanos , Lipídeos , Resposta a Proteínas não Dobradas
16.
Chem Sci ; 12(13): 4763-4770, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168754

RESUMO

Pseudomonas aeruginosa is a difficult-to-treat Gram-negative bacterial pathogen causing life-threatening infections. Adaptive resistance (AR) to cationic peptide antibiotics such as polymyxin B impairs the therapeutic success. This self-protection is mediated by two component systems (TCSs) consisting of a membrane-bound histidine kinase and an intracellular response regulator (RR). As phosphorylation of the key RR aspartate residue is transient during signaling and hydrolytically unstable, the study of these systems is challenging. Here, we apply a tailored reverse polarity chemical proteomic strategy to capture this transient modification and read-out RR phosphorylation in complex proteomes using a nucleophilic probe. In-depth mechanistic insights into an ideal trapping strategy were performed with a recombinant RR demonstrating the importance of fine-tuned acidic pH values to facilitate the attack on the aspartate carbonyl C-atom and prevent unproductive hydrolysis. Analysis of Bacillus subtilis and P. aeruginosa proteomes revealed the detection of multiple annotated phosphoaspartate (pAsp) sites of known RRs in addition to many new potential pAsp sites. With this validated strategy we dissected the signaling of dynorphin A, a human peptide stress hormone, which is sensed by P. aeruginosa to prepare AR. Intriguingly, our methodology identified CprR as an unprecedented RR in dynorphin A interkingdom signaling.

17.
Sci Rep ; 11(1): 12347, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117308

RESUMO

Protein kinases are important regulators in cellular signal transduction. As one major type of Hsp90 client, protein kinases rely on the ATP-dependent molecular chaperone Hsp90, which maintains their structure and supports their activation. Depending on client type, Hsp90 interacts with different cofactors. Here we report that besides the kinase-specific cofactor Cdc37 large PPIases of the Fkbp-type strongly bind to kinase•Hsp90•Cdc37 complexes. We evaluate the nucleotide regulation of these assemblies and identify prominent interaction sites in this quaternary complex. The synergistic interaction between the participating proteins and the conserved nature of the interaction suggests functions of the large PPIases Fkbp51/Fkbp52 and their nematode homolog FKB-6 as contributing factors to the kinase cycle of the Hsp90 machinery.


Assuntos
Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Proteínas de Ligação a Tacrolimo/química , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Estabilidade Proteica , Proteínas de Ligação a Tacrolimo/metabolismo
18.
ACS Cent Sci ; 7(3): 488-498, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33791430

RESUMO

Isonitrile natural products exhibit promising antibacterial activities. However, their mechanism of action (MoA) remains largely unknown. Based on the nanomolar potency of xanthocillin X (Xan) against diverse difficult-to-treat Gram-negative bacteria, including the critical priority pathogen Acinetobacter baumannii, we performed in-depth studies to decipher its MoA. While neither metal binding nor cellular protein targets were detected as relevant for Xan's antibiotic effects, sequencing of resistant strains revealed a conserved mutation in the heme biosynthesis enzyme porphobilinogen synthase (PbgS). This mutation caused impaired enzymatic efficiency indicative of reduced heme production. This discovery led to the validation of an untapped mechanism, by which direct heme sequestration of Xan prevents its binding into cognate enzyme pockets resulting in uncontrolled cofactor biosynthesis, accumulation of porphyrins, and corresponding stress with deleterious effects for bacterial viability. Thus, Xan represents a promising antibiotic displaying activity even against multidrug resistant strains, while exhibiting low toxicity to human cells.

19.
Nat Chem ; 13(11): 1081-1092, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504315

RESUMO

Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule-lysine interactions captured by the entire library. We used these latter 'scout' electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein-RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.


Assuntos
Lisina/química , Proteoma/química , Células HEK293 , Humanos , Ligantes , Proteômica/métodos , Relação Estrutura-Atividade
20.
Chem Commun (Camb) ; 56(19): 2929-2932, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32039420

RESUMO

Degrasyn inhibits deubiquitination enzymes and has anti-cancer activity. We here show that it also exhibits antimicrobial activity against multi-resistant Staphylococcus aureus. Structure activity relationship studies demonstrate an important role of the electrophilic α-cyanoacrylamide moiety as a Michael acceptor. A suite of chemical proteomic techniques unraveled binding of this moiety to various cysteine residues of essential proteins in a reversibly covalent manner.


Assuntos
Antibacterianos/farmacologia , Cianoacrilatos/farmacologia , Cisteína/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Piridinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA