RESUMO
Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.
Assuntos
Doença/genética , Drosophila melanogaster/genética , Testes Genéticos , Padrões de Herança , Interferência de RNA , Animais , Modelos Animais de Doenças , Humanos , Cromossomo XRESUMO
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) remains a public health concern and a subject of active research effort. Development of pre-clinical animal models is critical to study viral-host interaction, tissue tropism, disease mechanisms, therapeutic approaches, and long-term sequelae of infection. Here, we report two mouse models for studying SARS-CoV-2: A knock-in mAce2F83Y,H353K mouse that expresses a mouse-human hybrid form of the angiotensin-converting enzyme 2 (ACE2) receptor under the endogenous mouse Ace2 promoter, and a Rosa26 conditional knock-in mouse carrying the human ACE2 allele (Rosa26hACE2). Although the mAce2F83Y,H353K mice were susceptible to intranasal inoculation with SARS-CoV-2, they did not show gross phenotypic abnormalities. Next, we generated a Rosa26hACE2;CMV-Cre mouse line that ubiquitously expresses the human ACE2 receptor. By day 3 post infection with SARS-CoV-2, Rosa26hACE2;CMV-Cre mice showed significant weight loss, a variable degree of alveolar wall thickening and reduced survival rates. Viral load measurements confirmed inoculation in lung and brain tissues of infected Rosa26hACE2;CMV-Cre mice. The phenotypic spectrum displayed by our different mouse models translates to the broad range of clinical symptoms seen in the human patients and can serve as a resource for the community to model and explore both treatment strategies and long-term consequences of SARS-CoV-2 infection.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Camundongos , Humanos , SARS-CoV-2/genética , Camundongos Transgênicos , Pulmão/virologia , Pulmão/patologia , Pulmão/metabolismo , Técnicas de Introdução de GenesRESUMO
Parkinson's disease (PD) is a common neurodegenerative disease, yet the underlying causative molecular mechanisms are ill defined. Numerous observations based on drug studies and mutations in genes that cause PD point to a complex set of rather subtle mitochondrial defects that may be causative. Indeed, intensive investigation of these genes in model organisms has revealed roles in the electron transport chain, mitochondrial protein homeostasis, mitophagy, and the fusion and fission of mitochondria. Here, we attempt to synthesize results from experimental studies in diverse systems to define the precise function of these PD genes, as well as their interplay with other genes that affect mitochondrial function. We propose that subtle mitochondrial defects in combination with other insults trigger the onset and progression of disease, in both familial and idiopathic PD.
Assuntos
Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Humanos , Mitocôndrias/genética , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Doença de Parkinson/genéticaRESUMO
[This corrects the article DOI: 10.1371/journal.pbio.1002197.].
RESUMO
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.
Assuntos
Proteínas de Drosophila/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Doenças Retinianas/genética , Trifosfato de Adenosina/biossíntese , Animais , Citrato (si)-Sintase/genética , Drosophila , Proteínas de Drosophila/metabolismo , Eletrorretinografia , Endocitose , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodopsina/metabolismo , Visão OcularRESUMO
Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of -3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (-70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes.
Assuntos
Mapeamento Cromossômico/métodos , Drosophila melanogaster/genética , Mutagênese , Animais , Metanossulfonato de Etila , Feminino , Genes Essenciais , Genes de Insetos , Masculino , Dados de Sequência Molecular , Mutagênicos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Cromossomo XRESUMO
We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNAmanipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.
Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Animais , Bioengenharia , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Íntrons , Mutagênese Insercional , Proteínas Recombinantes de Fusão/análise , Sequências Repetitivas de Ácido NucleicoRESUMO
Artificial intelligence (AI) has the potential to revolutionize chronic pain management by guiding the development of effective treatment strategies that are tailored to individual patient needs. This potential comes from AI's ability to analyze large and heterogeneous datasets to identify hidden patterns. When applied to clinical datasets of a particular patient population, AI can be used to identify pain subtypes among patients, predict treatment responses, and guide the clinical decision-making process. However, integrating AI into the clinical practice requires overcoming challenges such as data quality, the complexity of human pain physiology, and validation against diverse patient populations. Targeted, collaborative efforts among clinicians, researchers, and AI specialists will be needed to maximize AI's capabilities and advance current management and treatment of chronic pain conditions.
Assuntos
Inteligência Artificial , Dor Crônica , Manejo da Dor , Medicina de Precisão , Humanos , Inteligência Artificial/tendências , Dor Crônica/terapia , Dor Crônica/diagnóstico , Manejo da Dor/métodos , Manejo da Dor/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendênciasRESUMO
Background: The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium's over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and peri-articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches. The aim of this manuscript is to elucidate the human data gathered by the RE-JOIN consortium, as well as to expound upon its underlying rationale and the methodologies and protocols for harmonization and standardization that have been instituted by the RE-JOIN Consortium. Methods: The consortium-wide human models working subgroup established the RE-JOIN minimal harmonized data elements that will be collected across all human studies and set the stage to develop parallel pre-clinical data collection standards. Data harmonization considerations included requirements from the HEAL program and recommendations from the consortium's researchers and experts on informatics, knowledge management, and data curation. Results: Multidisciplinary experts - including preclinical and clinical researchers, with both clinician-scientists- developed the RE-JOIN's Minimal Human Data Standard with required domains and outcome measures to be collected across projects and institutions. The RE-JOIN minimal data standard will include HEAL Common Data Elements (CDEs) (e.g., standardized demographics, general pain, psychosocial and functional measures), and RE-JOIN common data elements (R-CDE) (i.e., both general and joint-specific standardized and clinically important self-reported pain and function measures, as well as pressure pain thresholds part of quantitative sensory testing). In addition, discretionary, site-specific measures will be collected by individual institutions (e.g., expanded quantitative sensory testing and gait biomechanical assessments), specific to the knee or TMJ. Research teams will submit datasets of standardized metadata to the RE-JOIN Data Coordinating Center (DCG) via a secure cloud-based central data repository and computing infrastructure for researchers to share and conduct analyses on data collected by or acquired for RE-JOIN. RE-JOIN datasets will have protected health information (PHI) removed and be publicly available on the SPARC portal and accessible through the HEAL Data Ecosystem. Conclusion: Data Harmonization efforts provide the multidisciplinary consortium with an opportunity to effectively collaborate across decentralized research teams, and data standardization sets the framework for efficient future analyses of RE-JOIN data collected by the consortium. The harmonized phenotypic information obtained will significantly enhance our understanding of the neurobiology of the pain-pathology relationships in humans, providing valuable insights for comparison with pre-clinical models.
RESUMO
Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Drosophila , Transtornos do Neurodesenvolvimento , Receptores de Glicina , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/genética , Drosophila/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de Glicina/genéticaRESUMO
Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-ß, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased αSMA, MMP2, and phospho-NFκB staining in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice - a phenotype that correlates with the tendon pathology.
Assuntos
Tendão do Calcâneo/patologia , Proteínas da Matriz Extracelular/deficiência , Atividade Motora , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/fisiopatologia , Ligamento Patelar/patologia , Tendão do Calcâneo/metabolismo , Actinas/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Genes Recessivos , Predisposição Genética para Doença , Força da Mão , Metaloproteinase 2 da Matriz/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , NF-kappa B/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Ligamento Patelar/metabolismo , Fenótipo , Fosforilação , Resistência Física , Células-Tronco/metabolismo , Células-Tronco/patologiaRESUMO
How does the skeleton detect and adapt to changes in the mechanical load it has to carry?
Assuntos
Mecanotransdução Celular , Osteogênese , Canais IônicosRESUMO
Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.
Assuntos
Aneurisma Aórtico/patologia , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mutação , Miócitos de Músculo Liso/patologia , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Proteínas de Transporte/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Pré-Escolar , Citoesqueleto , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genética , Adulto JovemRESUMO
We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss of Nrd1 or Ogdh leads to an increase in α-ketoglutarate, a substrate for OGDH, which in turn leads to mTORC1 activation and a subsequent reduction in autophagy. Inhibition of mTOR activity by rapamycin or partially restoring autophagy delays neurodegeneration in dNrd1 mutant flies. In summary, this study reveals a novel role for NRD1 as a mitochondrial co-chaperone for OGDH and provides a mechanistic link between mitochondrial metabolic dysfunction, mTORC1 signaling, and impaired autophagy in neurodegeneration.
Assuntos
Autofagia/genética , Proteínas de Drosophila/genética , Complexo Cetoglutarato Desidrogenase/genética , Metaloendopeptidases/genética , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Drosophila , Drosophila melanogaster , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Metaloendopeptidases/metabolismo , Chaperonas Moleculares , Doenças Neurodegenerativas/genéticaRESUMO
Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.
Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteínas de Drosophila/metabolismo , Ataxia de Friedreich/fisiopatologia , Proteínas de Ligação ao Ferro/genética , Ferro/toxicidade , Fatores de Regulação Miogênica/metabolismo , Esfingolipídeos/biossíntese , Animais , Modelos Animais de Doenças , Drosophila , FrataxinaRESUMO
FlyVar is a publicly and freely available platform that addresses the increasing need of next generation sequencing data analysis in the Drosophila research community. It is composed of three parts. First, a database that contains 5.94 million DNA polymorphisms found in Drosophila melanogaster derived from whole genome shotgun sequencing of 612 genomes of D. melanogaster. In addition, a list of 1094 dispensable genes has been identified. Second, a graphical user interface (GUI) has been implemented to allow easy and flexible queries of the database. Third, a set of interactive online tools enables filtering and annotation of genomic sequences obtained from individual D. melanogaster strains to identify candidate mutations. FlyVar permits the analysis of next generation sequencing data without the need of extensive computational training or resources. Database URL: www.iipl.fudan.edu.cn/FlyVar.
Assuntos
Bases de Dados Genéticas , Genes de Insetos , Anotação de Sequência Molecular , Polimorfismo Genético , Interface Usuário-Computador , Animais , Drosophila melanogasterRESUMO
Eyes absent (Eya) is a highly conserved transcription cofactor and protein phosphatase that plays an essential role in eye development and survival in Drosophila. Ectopic eye induction assays using cDNA transgenes have suggested that mitogen activated protein kinase (MAPK) activates Eya by phosphorylating it on two consensus target sites, S402 and S407, and that this activation potentiates the ability of Eya to drive eye formation. However, this mechanism has never been tested in normal eye development. In the current study, we generated a series of genomic rescue transgenes to investigate how loss- and gain-of-function mutations at these two MAPK target sites within Eya affect Drosophila survival and normal eye formation: eya(+)GR, the wild-type control; eya(SA)GR, which lacks phosphorylation at the two target residues; and eya(SDE)GR, which contains phosphomimetic amino acids at the same two residues. Contrary to the previous studies in ectopic eye development, all eya genomic transgenes tested rescue both eye formation and survival equally effectively. We conclude that, in contrast to ectopic eye formation, MAPK-mediated phosphorylation of Eya on S402 and S407 does not play a role in normal development. This is the first study in Drosophila to evaluate the difference in outcomes between genomic rescue and ectopic cDNA-based overexpression of the same gene. These findings indicate similar genomic rescue strategies may prove useful for re-evaluating other long-standing Drosophila developmental models.