Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(4): 747-760, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232326

RESUMO

Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0-0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.

2.
Langmuir ; 36(16): 4540-4547, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32298112

RESUMO

A widely applicable method for aligning 1D materials, and in particular carbon nanotubes (CNTs), independent of their preparation would be very useful as the growth methods for these materials are substance-specific. Langmuir-Schaefer (LS) deposition could be such an approach for alignment, as it aligns a large number of 1D materials independently of the desired substrate. However, the mechanism and required conditions for alignment of 1D nanomaterials in a Langmuir trough are still unclear. Here we show, relying on numerical simulations of the Langmuir film compression, that the LS method is a powerful tool to achieve maximal alignment of 1D material in a controllable manner. In particular, 1D materials terminated with a suitable surfactant can align only if the velocity induced by the attraction between individual 1D entities is low enough relative to the flow speed. To validate this model, we achieved an efficient LS alignment of single-walled carbon nanotubes covered with a suitable surfactant relying on the numerical simulations. In situ polarized Raman microspectroscopy during the compression of Langmuir film revealed good quantitative agreement between the numerical simulations and the experiment. This suggests the applicability of the LS technique as a versatile method for the controlled alignment of 1D materials.

3.
Langmuir ; 36(8): 1898-1906, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027509

RESUMO

We report on the microstructure, morphology, and growth of 5,5'-bis(naphth-2-yl)-2,2'-bithiophene (NaT2) thin films deposited on graphene, characterized by grazing incidence X-ray diffraction (GIXRD) and complemented by atomic force microscopy (AFM) measurements. NaT2 is deposited on two types of graphene surfaces: custom-made samples where chemical vapor deposition (CVD)-grown graphene layers are transferred onto a Si/SiO2 substrate by us and common commercially transferred CVD graphene on Si/SiO2. Pristine Si/SiO2 substrates are used as a reference. The NaT2 crystal structure and orientation depend strongly on the underlying surface, with the molecules predominantly lying down on the graphene surface (face-on orientation) and standing nearly out-of-plane (edge-on orientation) on the Si/SiO2 reference surface. Post growth GIXRD and AFM measurements reveal that the crystalline structure and grain morphology differ depending on whether there is polymer residue left on the graphene surface. In situ GIXRD measurements show that the thickness dependence of the intensity of the (111) reflection from the crystalline edge-on phase does not intersect zero at the beginning of the deposition process, suggesting that an initial wetting layer, corresponding to 1-2 molecular layers, is formed at the surface-film interface. By contrast, the (111) reflection intensity from the crystalline face-on phase grows at a constant rate as a function of film thickness during the entire deposition.

4.
Nanotechnology ; 32(4): 045708, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140739

RESUMO

Gel filtration is a versatile technique employed for biological molecules and nanoparticles, offering their reproducible classification based on size and shape. Colloidal nanoparticles are of significant interest in biomedical applications due to a large number of solution-based bioconjugation procedures. Nevertheless, the inherent polydispersity of the nanoparticles produced by various techniques necessitates the employment of high yield separation and purification techniques. Here we demonstrate the employment of gel filtration on non-stoichiometric plasmonic MoO x nanoparticles, prepared by an oxidation process during liquid-phase exfoliation of few-layer MoS2 nanosheets. This resulted in the separation of two types of MoO x particles, in the form of two different chromatographic fractions. They showed different sizes, morphological and optical properties. The fraction containing smaller particles with diameters of 1-4 nm, exhibited an increased absorbance peak in the near IR region and responded with a significant temperature increase to laser irradiation at the wavelength close to the maximal absorption. The fraction with the larger particles from 3 up to 10 nm, showed weak photoluminescence and a preferred orientation upon the deposition on a planar substrate. However, it had no absorbance in the near IR compared to the former fraction. According to our knowledge, this is the first time that the gel filtration was applied to the separation of molybdenum oxide nanomaterials. This step ensured the isolation of plasmonic MoO x nanoparticles suitable for further bioconjugation and target photothermal treatment.

5.
Phys Chem Chem Phys ; 22(5): 3097-3104, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967129

RESUMO

Small π-conjugated organic molecules have attracted substantial attention in the past decade as they are considered as candidates for future organic-based (opto-)electronic applications. The molecular arrangement in the organic layer is one of the crucial parameters that determine the efficiency of a given device. The desired orientation of the molecules is achieved by a proper choice of the underlying substrate and growth conditions. Typically, one underlying material supports only one inherent molecular orientation at its interface. Here, we report on two different orientations of diindenoperylene (DIP) molecules on the same underlayer, i.e. on a few-layer MoS2 substrate. We show that DIP molecules adopt a lying-down orientation when deposited on few-layer MoS2 with horizontally oriented layers. In contrast, for vertically aligned MoS2 layers, DIP molecules are arranged in a standing-up manner. Employing in situ and real-time grazing-incidence wide-angle X-ray scattering (GIWAXS), we monitored the stress evolution within the thin DIP layer from the early stages of the growth, revealing different substrate-induced phases for the two molecular orientations. Our study opens up new possibilities for the next-generation of flexible electronics, which might benefit from the combination of MoS2 layers with unique optical and electronic properties and an extensive reservoir of small organic molecules.

6.
Langmuir ; 35(30): 9802-9808, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31282679

RESUMO

Few-layer MoS2 films stay at the forefront of current research of two-dimensional materials. At present, continuous MoS2 films are prepared by chemical vapor deposition (CVD) techniques. Herein, we present a cost-effective fabrication of the large-area spatially uniform films of few-layer MoS2 flakes using a modified Langmuir-Schaefer technique. The compression of the liquid-phase exfoliated MoS2 flakes on the water subphase was used to form a continuous layer, which was subsequently transferred onto a submerged substrate by removing the subphase. After vacuum annealing, the electrical sheet resistance dropped to a level of 10 kΩ/sq, being highly competitive with that of CVD-deposited MoS2 nanosheet films. In addition, a consistent fabrication protocol of the large-area conductive MoS2 films was established. The morphology and electrical properties predetermine these films to advanced detecting, sensing, and catalytic applications. A large number of experimental techniques were used to characterize the exfoliated few-layer MoS2 flakes and to elucidate the formation of the few-layer MoS2 Langmuir film.

7.
Phys Chem Chem Phys ; 21(23): 12396-12405, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31140503

RESUMO

It is generally accepted that liquid-phase exfoliation (LPE) enables large-scale production of few-layer MoS2 flakes. In our work, we studied in detail few-layer MoS2 oxidation in the course of standard LPE in a water/ethanol solution. We demonstrate that an increase of the initial MoS2 concentration above a certain threshold triggers a pronounced oxidation and the exfoliation process starts to produce MoOx nanoparticles. A subsequent decrease of the water pH along with an increased content of SO42- suggests an oxidation scenario of few-layer MoS2 oxidation towards MoOx nanoparticles. Moreover, the lowered pH leads to agglomeration and sedimentation of the few-layer MoS2 flakes, which significantly lowers their production yield. We employed a large number of physico-chemical techniques to study the MoS2-to-MoOx transformation and found a threshold value of 10 mg ml-1 of the initial MoS2 concentration to trigger this transformation.

8.
Colloids Surf B Biointerfaces ; 197: 111425, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099149

RESUMO

Bacillus subtilis spore coat is a bacterial proteinaceous structure with amazing characteristics of self-organization, unique resiliency, toughness and flexibility in the same time. The spore coat represents a complex multilayered protein structure which is composed of over 80 coat proteins. Some of these proteins form two dimensional crystal structures who's low resolution ternary structure as was determined by electron microscopy. However, there are no 3D structure of these proteins known, due to a problem of preparing 3D crystals which could be analyzed by synchrotron X-ray sources. In the present study, Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) was applied to investigate a diffraction pattern of CotY 2D crystals formed on Langmuir monolayer films. We observed two distinct diffraction rings and their position corresponds to a structure with the lattice spacing of 10.6 Å and 5.0 Å, respectively. Obtaining diffractions of 2D crystals pave the way to determination of 3D structure of coat proteins by using strong X-ray sources.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Proteínas de Bactérias , Parede Celular , Microscopia Eletrônica
9.
J Appl Crystallogr ; 54(Pt 1): 203-210, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833648

RESUMO

Many polymorphic crystal structures of copper phthalocyanine (CuPc) have been reported over the past few decades, but despite its manifold applicability, the structure of the frequently mentioned α polymorph remained unclear. The base-centered unit cell (space group C2/c) suggested in 1966 was ruled out in 2003 and was replaced by a primitive triclinic unit cell (space group P 1). This study proves unequivocally that both α structures coexist in vacuum-deposited CuPc thin films on native silicon oxide by reciprocal space mapping using synchrotron radiation in grazing incidence. The unit-cell parameters and the space group were determined by kinematic scattering theory and provide possible molecular arrangements within the unit cell of the C2/c structure by excluded-volume considerations. In situ X-ray diffraction experiments and ex situ atomic force microscopy complement the experimental data further and provide insight into the formation of a smooth thin film by a temperature-driven downward diffusion of CuPc molecules during growth.

10.
RSC Adv ; 9(51): 29645-29651, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531524

RESUMO

Few-layer MoS2 films are promising candidates for applications in numerous areas, such as photovoltaics, photocatalysis, nanotribology, lithium batteries, hydro-desulfurization catalysis and dry lubricants, especially due to their distinctive electronic, optical, and catalytic properties. In general, two alignments of MoS2 layers are possible - the horizontal and the vertical one, having different physicochemical properties. Layers of both orientations are conventionally fabricated by a sulfurization of pre-deposited Mo films. So far, the Mo thickness was considered as a critical parameter influencing the final orientation of MoS2 layers with horizontally and vertically aligned MoS2 grown from thin (1 nm) and thick (3 nm) Mo films, respectively. Here, we present a fabrication protocol enabling the growth of horizontally or vertically aligned few-layer MoS2 films utilizing the same Mo thickness of 3 nm. We show that the sulfur vapor is another parameter influencing the growth mechanism, where a sulfurization with higher sulfur vapor pressure leads to vertical MoS2 layers and slow sulfur evaporation results in horizontally aligned layers for a thicker Mo starting layer.

11.
Sci Rep ; 9(1): 2001, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765759

RESUMO

The last few decades faced on the fabrication of advanced engineering materials involving also different composites. Here, we report on the fabrication of few-layer molybdenum disulfide on top of thin polycrystalline diamond substrates with a high specific surface area. In the method, pre-deposited molybdenum coatings were sulfurized in a one-zone furnace at ambient pressure. As-prepared MoS2 layers were characterized by several techniques including grazing-incidence wide-angle X-ray scattering, atomic force microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. We found out that the initial thickness of Mo films determined the final c-axis crystallographic orientation of MoS2 layer as previously observed on other substrates. Even though it is well-known that Mo diffuses into diamond at elevated temperatures, the competing sulfurization applied effectively suppressed the diffusion and a chemical reaction between molybdenum and diamond. In particular, a Mo2C layer does not form at the interface between the Mo film and diamond substrate. The combination of diamond high specific surface area along with a controllable layer orientation might be attractive for applications, such as water splitting or water disinfection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA