Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Lett ; 44(5): 1210-1213, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821750

RESUMO

The development of diffractive lenses for the upper terahertz (THz) frequency range above 1 THz was successfully demonstrated by employing a direct laser ablation (DLA) technology. Two types of samples such as the Soret zone plate lens and the multi-level phase-correcting Fresnel lens were fabricated of a metal foil and crystalline silicon, respectively. The focusing performance along the optical axis of a 4.745 THz quantum cascade laser beam with respect to the positioning angle of the sample was studied by using a real-time microbolometric camera. A binary-phase profile sample demonstrated the values of the focusing gain and focused beam size up to 25 dB and 0.15 mm (2.4λ), respectively. The increase of the phase quantization level to eight led to higher (up to 29 dB) focusing gain values without a measurable increase of optical losses. All the samples were tolerant to misalignment as large as 10 deg of oblique incidence with a focusing power drop no larger than 10%. The results pave the way for new applications of industry-ready DLA technology in the entire THz range.

2.
Opt Express ; 25(24): 30203-30213, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221052

RESUMO

We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D2O and CH3OD in an absorption cell.

3.
Opt Express ; 24(13): 13839-49, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410547

RESUMO

We report on a high-spectral-resolution terahertz imaging system operating with a multi-mode quantum-cascade laser (QCL), a fast scanning mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL, several spectra can be recorded in 1.5 s during the scan through a gas cell filled with methanol (CH3OH). These experiments yield information about the local absorption and the linewidth. Measurements with a faster frame rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking from a terahertz-transparent tube into the evacuated cell. In addition to the relative absorption, the local pressure is mapped by exploiting the effect of pressure broadening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA