Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2205882120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800386

RESUMO

The PII superfamily consists of widespread signal transduction proteins found in all domains of life. In addition to canonical PII proteins involved in C/N sensing, structurally similar PII-like proteins evolved to fulfill diverse, yet poorly understood cellular functions. In cyanobacteria, the bicarbonate transporter SbtA is co-transcribed with the conserved PII-like protein, SbtB, to augment intracellular inorganic carbon levels for efficient CO2 fixation. We identified SbtB as a sensor of various adenine nucleotides including the second messenger nucleotides cyclic AMP (cAMP) and c-di-AMP. Moreover, many SbtB proteins possess a C-terminal extension with a disulfide bridge of potential redox-regulatory function, which we call R-loop. Here, we reveal an unusual ATP/ADP apyrase (diphosphohydrolase) activity of SbtB that is controlled by the R-loop. We followed the sequence of hydrolysis reactions from ATP over ADP to AMP in crystallographic snapshots and unravel the structural mechanism by which changes of the R-loop redox state modulate apyrase activity. We further gathered evidence that this redox state is controlled by thioredoxin, suggesting that it is generally linked to cellular metabolism, which is supported by physiological alterations in site-specific mutants of the SbtB protein. Finally, we present a refined model of how SbtB regulates SbtA activity, in which both the apyrase activity and its redox regulation play a central role. This highlights SbtB as a central switch point in cyanobacterial cell physiology, integrating not only signals from the energy state (adenyl-nucleotide binding) and the carbon supply via cAMP binding but also from the day/night status reported by the C-terminal redox switch.


Assuntos
Apirase , Cianobactérias , Apirase/genética , Apirase/metabolismo , Bicarbonatos/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo
2.
Syst Biol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934241

RESUMO

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis paving the way for complex life. Studying the evolution and ecological niche of cyanobacteria and their ancestors is crucial for understanding the intricate dynamics of biosphere evolution. These organisms frequently deal with environmental stressors such as salinity and drought, and they employ compatible solutes as a mechanism to cope with these challenges. Compatible solutes are small molecules that help maintain cellular osmotic balance in high salinity environments, such as marine waters. Their production plays a crucial role in salt tolerance, which, in turn, influences habitat preference. Among the five known compatible solutes produced by cyanobacteria (sucrose, trehalose, glucosylglycerol, glucosylglycerate, and glycine betaine), their synthesis varies between individual strains. In this study, we work in a Bayesian stochastic mapping framework, integrating multiple sources of information about compatible solute biosynthesis in order to predict the ancestral habitat preference of Cyanobacteria. Through extensive model selection analyses and statistical tests for correlation, we identify glucosylglycerol and glucosylglycerate as the most significantly correlated with habitat preference, while trehalose exhibits the weakest correlation. Additionally, glucosylglycerol, glucosylglycerate, and glycine betaine show high loss/gain rate ratios, indicating their potential role in adaptability, while sucrose and trehalose are less likely to be lost due to their additional cellular functions. Contrary to previous findings, our analyses predict that the last common ancestor of Cyanobacteria (living at around 3180 Ma) had a 97% probability of a high salinity habitat preference and was likely able to synthesise glucosylglycerol and glucosylglycerate. Nevertheless, cyanobacteria likely colonized low-salinity environments shortly after their origin, with an 89% probability of the first cyanobacterium with low-salinity habitat preference arising prior to the Great Oxygenation Event (2460 Ma). Stochastic mapping analyses provide evidence of cyanobacteria inhabiting early marine habitats, aiding in the interpretation of the geological record. Our age estimate of ~2590 Ma for the divergence of two major cyanobacterial clades (Macro- and Microcyanobacteria) suggests that these were likely significant contributors to primary productivity in marine habitats in the lead-up to the Great Oxygenation Event, and thus played a pivotal role in triggering the sudden increase in atmospheric oxygen.

3.
Mol Cell Proteomics ; 22(11): 100656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797745

RESUMO

Protein phosphorylation via serine/threonine protein kinases (Spk) is a widespread mechanism to adjust cellular processes toward changing environmental conditions. To study their role(s) in cyanobacteria, we investigated a collection of 11 completely segregated spk mutants among the 12 annotated Spks in the model cyanobacterium Synechocystis sp. PCC 6803. Screening of the mutant collection revealed that especially the mutant defective in SpkB encoded by slr1697 showed clear deviations regarding carbon metabolism, that is, reduced growth rates at low CO2 or in the presence of glucose, and different glycogen accumulation patterns compared to WT. Alterations in the proteome of ΔspkB indicated changes of the cell surface but also metabolic functions. A phospho-proteome analysis revealed the absence of any phosphorylation in two proteins, while decreased phosphorylation of the carboxysome-associated protein CcmM and increased phosphorylation of the allophycocyanin alpha subunit ApcA was detected in ΔspkB. Furthermore, the regulatory PII protein appeared less phosphorylated in the mutant compared to WT, which was verified in Western blot experiments, indicating a clearly delayed PII phosphorylation in cells shifted from nitrate-containing to nitrate-free medium. Our results indicate that SpkB is an important regulator in Synechocystis that is involved in phosphorylation of the PII protein and additional proteins.


Assuntos
Proteínas Serina-Treonina Quinases , Synechocystis , Proteínas Serina-Treonina Quinases/metabolismo , Synechocystis/metabolismo , Proteoma/metabolismo , Mutação , Aclimatação , Treonina/metabolismo , Serina/metabolismo , Proteínas de Bactérias/metabolismo
4.
Plant Cell Environ ; 47(7): 2542-2560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518065

RESUMO

Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.


Assuntos
Di-Hidrolipoamida Desidrogenase , Mitocôndrias , Tiorredoxinas , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fotossíntese , Oxirredução , NAD/metabolismo , Meio Ambiente , Mutação , Dióxido de Carbono/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
Physiol Plant ; 176(2): e14234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439180

RESUMO

A variety of inorganic carbon acquisition modes have been proposed in Characean algae, however, a broadly applicable inorganic carbon uptake mechanism is unknown for the genus Chara. In the present study, we analyzed if C. braunii can efficiently use HCO3 - as a carbon source for photosynthesis. For this purpose, C. braunii was exposed to different concentrations of NaHCO3 - at different time scales. The photosynthetic electron transport through photosystem I (PSI) and II (PSII), the maximum electron transport rate (ETRmax ), the efficiency of the electron transport rate (α, the initial slope of the ETR), and the light saturation point of photosynthesis (Ek ) were evaluated. Additionally, pigment contents (chlorophyll a, chlorophyll b, and carotenoids) were determined. Bicarbonate addition positively affected ETRmax , after direct HCO3 - application, of both PSII and PSI, but this effect seems to decrease after 1 h and 24 h. Similar trends were seen for Ek , but no significant effect was observed for α. Pigment contents showed no significant changes in relation to different HCO3 - concentrations. To evaluate if cyclic electron flow around PSI was involved in active HCO3 - uptake, the ratio of PSI ETRmax /PSII ETRmax was calculated but did not show a distinctive trend. These results suggest that C. braunii can utilize NaHCO3 - in short-term periods as a carbon source but could rely on other carbon acquisition mechanisms over prolonged time periods. These observations suggest that the minor role of HCO3 - as a carbon source for photosynthesis in this alga might differentiate C. braunii from other examined Chara spp.


Assuntos
Bicarbonatos , Chara , Clorofila A , Fotossíntese , Carbono
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526690

RESUMO

Nitrogen limitation imposes a major transition in the lifestyle of nondiazotrophic cyanobacteria that is controlled by a complex interplay of regulatory factors involving the pervasive signal processor PII Immediately upon nitrogen limitation, newly fixed carbon is redirected toward glycogen synthesis. How the metabolic switch for diverting fixed carbon toward the synthesis of glycogen or of cellular building blocks is operated was so far poorly understood. Here, using the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803 as model system, we identified a novel PII interactor, the product of the sll0944 gene, which we named PirC. We show that PirC binds to and inhibits the activity of 2,3-phosphoglycerate-independent phosphoglycerate mutase (PGAM), the enzyme that deviates newly fixed CO2 toward lower glycolysis. The binding of PirC to either PII or PGAM is tuned by the metabolite 2-oxoglutarate (2-OG), which accumulates upon nitrogen starvation. In these conditions, the high levels of 2-OG dissociate the PirC-PII complex to promote PirC binding to and inhibition of PGAM. Accordingly, a PirC-deficient mutant showed strongly reduced glycogen levels upon nitrogen deprivation, whereas polyhydroxybutyrate granules were overaccumulated compared to wild-type. Metabolome analysis revealed an imbalance in 3-phosphoglycerate to pyruvate levels in the pirC mutant, confirming that PirC controls the carbon flux in cyanobacteria via mutually exclusive interaction with either PII or PGAM.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfoglicerato Mutase/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Cianobactérias/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfoglicerato Mutase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
7.
New Phytol ; 239(3): 1083-1097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282607

RESUMO

An increasing number of small proteins has been identified in the genomes of well-annotated organisms, including the model cyanobacterium Synechocystis sp. PCC 6803. We describe a newly assigned protein comprising 37 amino acids that is encoded upstream of the superoxide dismutase SodB encoding gene. To clarify the role of SliP4, we analyzed a Synechocystis sliP4 mutant and a strain containing a fully active, Flag-tagged variant of SliP4 (SliP4.f). The initial hypothesis that this small protein might be functionally related to SodB could not be supported. Instead, we provide evidence that it fulfills important functions related to the organization of photosynthetic complexes. Therefore, we named it a small light-induced protein of 4 kDa, SliP4. This protein is strongly induced under high-light conditions. The lack of SliP4 causes a light-sensitive phenotype due to impaired cyclic electron flow and state transitions. Interestingly, SliP4.f was co-isolated with NDH1 complex and both photosystems. The interaction between SliP4.f and all three types of complexes was further confirmed by additional pulldowns and 2D-electrophoreses. We propose that the dimeric SliP4 serves as a molecular glue promoting the aggregation of thylakoid complexes, which contributes to different electron transfer modes and energy dissipation under stress conditions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Transporte de Elétrons , Synechocystis/metabolismo , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Tilacoides/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
8.
Physiol Plant ; 175(6): e14123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148211

RESUMO

Chara braunii is a model for early land plant evolution and terrestrialization. Salt stress has a profound effect on water and ion transport activities, thereby interacting with many other processes, including inorganic carbon acquisition for photosynthesis. In this study, we analyzed the impact of salt stress (5 practical salt units, PSU) on the physiology and gene expression in C. braunii. Photosynthesis was only slightly affected 6 h after salt addition and returned to control levels after 48 h. Several organic compounds such as proline, glutamate, sucrose, and 2-aminobutyrate accumulated in salt-treated thalli and might contribute to osmotic potential acclimation, whereas the amount of K+ decreased. We quantified transcript levels for 17,387 genes, of which 95 were up-regulated and 44 down-regulated after salt addition. Genes encoding proteins of the functional groups ion/solute transport and cell wall synthesis/modulation were enriched among the up-regulated genes 24-48 h after salt stress, indicating their role in osmotic acclimation. However, a homolog to land plant ERD4 osmosensors was transiently upregulated after 6 h, and phylogenetic analyses suggested that these sensors evolved in Charophyceae. Down-regulated genes were mainly related to photosynthesis and carbon metabolism/fixation, consistent with the observed lowered growth after extended cultivation. The changed expression of genes encoding proteins for inorganic carbon acquisition might be related to the impact of salt on ionic relations and inorganic carbon uptake. The results indicate that C. braunii can tolerate enhanced salt concentrations in a defined acclimation process, including distinct gene expression changes to achieve new metabolic homeostasis.


Assuntos
Chara , Clorófitas , Transcriptoma , Perfilação da Expressão Gênica , Filogenia , Estresse Salino/genética , Carbono , Regulação da Expressão Gênica de Plantas
9.
New Phytol ; 234(5): 1801-1816, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285042

RESUMO

The amount of inorganic carbon (Ci ) fluctuates in aquatic environments. Cyanobacteria evolved a Ci -concentrating mechanism (CCM) that is regulated at different levels. The regulator SbtB binds to the second messengers cAMP or c-di-AMP and is involved in acclimation to low Ci (LC) in Synechocystis sp. PCC 6803. Here, we investigated the role of SbtB and of associated second messengers at different Ci conditions. The transcriptome of wild-type (WT) Synechocystis and the ΔsbtB mutant were compared with Δcya1, a mutant defective in cAMP production, and ΔdacA, a mutant defective in generating c-di-AMP. A defined subset of LC-regulated genes in the WT was already changed in ΔsbtB under high Ci (HC) conditions. This response of ΔsbtB correlated with a diminished induction of many CCM-associated genes after LC shift in this mutant. The Δcya1 mutant showed less deviation from WT, whereas ΔdacA induced CCM-associated genes under HC. Metabolome analysis also revealed differences between the strains, whereby ΔsbtB showed slower accumulation of 2-phosphoglycolate and ΔdacA differences among amino acids compared to WT. Collectively, these results indicate that SbtB regulates a subset of LC acclimation genes while c-di-AMP and especially cAMP appear to have a lesser impact on gene expression under different Ci availabilities.


Assuntos
Carbono , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Fosfatos de Dinucleosídeos , Regulação Bacteriana da Expressão Gênica , Fotossíntese , Sistemas do Segundo Mensageiro , Synechocystis/genética , Synechocystis/metabolismo , Transcriptoma
10.
J Bacteriol ; 204(1): JB0015821, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228497

RESUMO

Small proteins are critically involved in the acclimation response of photosynthetic cyanobacteria to nitrogen starvation. NblD is the 66-amino-acid effector of nitrogen-limitation-induced phycobilisome breakdown, which is believed to replenish the cellular amino acid pools. To address the physiological functions of NblD, the concentrations of amino acids, intermediates of the arginine catabolism pathway and several organic acids were measured during the response to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 wild type and in an nblD deletion strain. A characteristic signature of metabolite pool composition was identified, which shows that NblD-mediated phycobilisome degradation is required to maintain the cellular amino acid and organic acid pools during nitrogen starvation. Specific deviations from the wild type suggest wider-reaching effects that also affect such processes as redox homeostasis via glutathione and tetrapyrrole biosynthesis, both of which are linked to the strongly decreased glutamate pool, and transcriptional reprogramming via an enhanced concentration of 2-oxoglutarate, the metabolite co-regulator of the NtcA transcription factor. The essential role played by NblD in metabolic homeostasis is consistent with the widespread occurrence of NblD throughout the cyanobacterial radiation and the previously observed strong positive selection for the nblD gene under fluctuating nitrogen supply. Importance Cyanobacteria play important roles in the global carbon and nitrogen cycles. In their natural environment, these organisms are exposed to fluctuating nutrient conditions. Nitrogen starvation induces a coordinated nitrogen-saving program that includes the breakdown of nitrogen-rich photosynthetic pigments, particularly phycobiliproteins. The small protein NblD was recently identified as an effector of phycobilisome breakdown in cyanobacteria. In this study, we demonstrate that the NblD-mediated degradation of phycobiliproteins is needed to sustain cellular pools of soluble amino acids and other crucial metabolites. The essential role played by NblD in metabolic homeostasis explains why genes encoding this small protein are conserved in almost all members of cyanobacterial radiation.

11.
Plant J ; 103(2): 801-813, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32311173

RESUMO

The multienzyme glycine cleavage system (GCS) converts glycine and tetrahydrofolate to the one-carbon compound 5,10-methylenetetrahydrofolate, which is of vital importance for most if not all organisms. Photorespiring plant mitochondria contain very high levels of GCS proteins organised as a fragile glycine decarboxylase complex (GDC). The aim of this study is to provide mass spectrometry-based stoichiometric data for the plant leaf GDC and examine whether complex formation could be a general property of the GCS in photosynthesizing organisms. The molar ratios of the leaf GDC component proteins are 1L2 -4P2 -8T-26H and 1L2 -4P2 -8T-20H for pea and Arabidopsis, respectively, as determined by mass spectrometry. The minimum mass of the plant leaf GDC ranges from 1550 to 1650 kDa, which is larger than previously assumed. The Arabidopsis GDC contains four times more of the isoforms GCS-P1 and GCS-L1 in comparison with GCS-P2 and GCS-L2, respectively, whereas the H-isoproteins GCS-H1 and GCS-H3 are fully redundant as indicated by their about equal amounts. Isoform GCS-H2 is not present in leaf mitochondria. In the cyanobacterium Synechocystis sp. PCC 6803, GCS proteins concentrations are low but above the complex formation threshold reported for pea leaf GDC. Indeed, formation of a cyanobacterial GDC from the individual recombinant GCS proteins in vitro could be demonstrated. Presence and metabolic significance of a Synechocystis GDC in vivo remain to be examined but could involve multimers of the GCS H-protein that dynamically crosslink the three GCS enzyme proteins, facilitating glycine metabolism by the formation of multienzyme metabolic complexes. Data are available via ProteomeXchange with identifier PXD018211.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cianobactérias/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo , Glicina/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Cianobactérias/enzimologia , Espectrometria de Massas , Pisum sativum/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Synechocystis/enzimologia , Synechocystis/metabolismo
12.
New Phytol ; 231(3): 1123-1137, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058021

RESUMO

Cyanobacteria are the only prokaryotes that perform plant-like oxygenic photosynthesis. They evolved an inorganic carbon-concentrating mechanism to adapt to low CO2 conditions. Quantitative phosphoproteomics was applied to analyze regulatory features during the acclimation to low CO2 conditions in the model cyanobacterium Synechocystis sp. PCC 6803. Overall, more than 2500 proteins were quantified, equivalent to c. 70% of the Synechocystis theoretical proteome. Proteins with changing abundances correlated largely with mRNA expression levels. Functional annotation of the noncorrelating proteins revealed an enrichment of key metabolic processes fundamental for maintaining cellular homeostasis. Furthermore, 105 phosphoproteins harboring over 200 site-specific phosphorylation events were identified. Subunits of the bicarbonate transporter BCT1 and the redox switch protein CP12 were among phosphoproteins with reduced phosphorylation levels at lower CO2 , whereas the serine/threonine protein kinase SpkC revealed increased phosphorylation levels. The corresponding ΔspkC mutant was characterized and showed decreased ability to acclimate to low CO2 conditions. Possible phosphorylation targets of SpkC including a BCT1 subunit were identified by phosphoproteomics. Collectively, our study highlights the importance of posttranscriptional regulation of protein abundances as well as posttranslational regulation by protein phosphorylation for the successful acclimation towards low CO2 conditions in Synechocystis and possibly among cyanobacteria.


Assuntos
Synechocystis , Aclimatação , Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Fotossíntese , Proteoma , Synechocystis/genética , Synechocystis/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(21): E4861-E4869, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735650

RESUMO

Cyanobacteria are phototrophic prokaryotes that evolved oxygenic photosynthesis ∼2.7 billion y ago and are presently responsible for ∼10% of total global photosynthetic production. To cope with the evolutionary pressure of dropping ambient CO2 concentrations, they evolved a CO2-concentrating mechanism (CCM) to augment intracellular inorganic carbon (Ci) levels for efficient CO2 fixation. However, how cyanobacteria sense the fluctuation in Ci is poorly understood. Here we present biochemical, structural, and physiological insights into SbtB, a unique PII-like signaling protein, which provides new insights into Ci sensing. SbtB is highly conserved in cyanobacteria and is coexpressed with CCM genes. The SbtB protein from the cyanobacterium Synechocystis sp. PCC 6803 bound a variety of adenosine nucleotides, including the second messenger cAMP. Cocrystal structures unraveled the individual binding modes of trimeric SbtB with AMP and cAMP. The nucleotide-binding pocket is located between the subunit clefts of SbtB, perfectly matching the structure of canonical PII proteins. This clearly indicates that proteins of the PII superfamily arose from a common ancestor, whose structurally conserved nucleotide-binding pocket has evolved to sense different adenyl nucleotides for various signaling functions. Moreover, we provide physiological and biochemical evidence for the involvement of SbtB in Ci acclimation. Collectively, our results suggest that SbtB acts as a Ci sensor protein via cAMP binding, highlighting an evolutionarily conserved role for cAMP in signaling the cellular carbon status.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Compostos Inorgânicos de Carbono/metabolismo , Cianobactérias/metabolismo , AMP Cíclico/metabolismo , Proteína Fosfatase 2/metabolismo , Aclimatação , Cristalografia por Raios X , Cianobactérias/crescimento & desenvolvimento , Fotossíntese , Transdução de Sinais
14.
Plant Physiol ; 181(2): 442-457, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31413204

RESUMO

Photorespiration sustains photosynthesis in the presence of oxygen due to rapid metabolization of 2-phosphoglycolate, the major side-product of the oxygenase activity of Rubisco that also directly impedes carbon assimilation and allocation. Despite the fact that both the biochemical reactions and the underlying genetics are well characterized, information concerning the regulatory mechanisms that adjust photorespiratory flux is rare. Here, we studied the impact of mitochondrial-localized thioredoxin o1 (TRXo1) on photorespiratory metabolism. The characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional line (trxo1-1) revealed an increase in the stoichiometry of photorespiratory CO2 release and impaired Gly-to-Ser turnover after a shift from high-to-low CO2 without changes in Gly decarboxylase (GDC) gene or protein expression. These effects were distinctly pronounced in a double mutant, where the TRXo1 mutation was combined with strongly reduced GDC T-protein expression. The double mutant (TxGT) showed reduced growth in air but not in high CO2, decreased photosynthesis, and up to 54-fold more Gly alongside several redox-stress-related metabolites. Given that GDC proteins are potential targets for redox-regulation, we also examined the in vitro properties of recombinant GDC l-proteins (lipoamide dehydrogenase) from plants and the cyanobacterium Synechocystis species strain PCC6803 and observed a redox-dependent inhibition by either artificial reducing agents or TRXo1 itself. Collectively, our results demonstrate that TRXo1 potentially adjusts photorespiration via redox-regulation of GDC in response to environmental changes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Tiorredoxinas/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Respiração Celular , Glicina Desidrogenase (Descarboxilante)/genética , Oxirredução , Pisum sativum , Synechocystis , Tiorredoxinas/genética
15.
J Exp Bot ; 71(14): 3955-3965, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32274517

RESUMO

Under the current atmospheric conditions, oxygenic photosynthesis requires photorespiration to operate. In the presence of low CO2/O2 ratios, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs an oxygenase side reaction, leading to the formation of high amounts of 2-phosphoglycolate during illumination. Given that 2-phosphoglycolate is a potent inhibitor of photosynthetic carbon fixation, it must be immediately removed through photorespiration. The core photorespiratory cycle is orchestrated across three interacting subcellular compartments, namely chloroplasts, peroxisomes, and mitochondria, and thus cross-talks with a multitude of other cellular processes. Over the past years, the metabolic interaction of photorespiration and photosynthetic CO2 fixation has attracted major interest because research has demonstrated the enhancement of C3 photosynthesis and growth through the genetic manipulation of photorespiration. However, to optimize future engineering approaches, it is also essential to improve our current understanding of the regulatory mechanisms of photorespiration. Here, we summarize recent progress regarding the steps that control carbon flux in photorespiration, eventually involving regulatory proteins and metabolites. In this regard, both genetic engineering and the identification of various layers of regulation point to glycine decarboxylase as the key enzyme to regulate and adjust the photorespiratory carbon flow. Potential implications of the regulation of photorespiration for acclimation to environmental changes along with open questions are also discussed.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Peroxissomos/metabolismo , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
16.
J Phycol ; 56(2): 496-506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925964

RESUMO

Desmonostoc salinum CCM-UFV059 (Desmonostoc) is a novel cyanobacterial strain of the order Nostocales isolated from a saline-alkaline lake. The acclimation towards salt and desiccation stress of Desmonostoc was compared to the related and well-characterized model strain Nostoc sp. PCC7120 (Nostoc). Salt-stressed cells of Desmonostoc maintained low cellular Na+ concentrations and accumulated high amounts of compatible solutes, mainly sucrose and to a lower extent trehalose. These features permitted Desmonostoc to grow and maintain photosynthesis at 2-fold higher salinities than Nostoc. Moreover, Desmonostoc also induced sucrose over-accumulation under desiccation, which allowed this strain to recover from this stress in contrast to Nostoc. Additional mechanisms such as the presence of highly unsaturated lipids in the membrane and an efficient ion transport system could also explain, at least partially, how Desmonostoc is able to acclimate to high salinities and to resist longer desiccation periods. Collectively, our results provide first insights into the physiological and metabolic adaptations explaining the remarkable high salt and desiccation tolerance, which qualify Desmonostoc as an attractive model for further analysis of stress acclimation among heterocystous N2 -fixing cyanobacteria.


Assuntos
Nostoc , Cianobactérias , Dessecação , Salinidade , Cloreto de Sódio
17.
Nucleic Acids Res ; 46(19): 10082-10094, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30085248

RESUMO

As the key enzyme of bacterial nitrogen assimilation, glutamine synthetase (GS) is tightly regulated. In cyanobacteria, GS activity is controlled by the interaction with inactivating protein factors IF7 and IF17 encoded by the genes gifA and gifB, respectively. We show that a glutamine-binding aptamer within the gifB 5' UTR of Synechocystis sp. PCC 6803 is critical for the expression of IF17. Binding of glutamine induced structural re-arrangements in this RNA element leading to enhanced protein synthesis in vivo and characterizing it as a riboswitch. Mutagenesis showed the riboswitch mechanism to contribute at least as much to the control of gene expression as the promoter-mediated transcriptional regulation. We suggest this and a structurally related but distinct element, to be designated type 1 and type 2 glutamine riboswitches. Extended biocomputational searches revealed that glutamine riboswitches are exclusively but frequently found in cyanobacterial genomes, where they are primarily associated with gifB homologs. Hence, this RNA-based sensing mechanism is common in cyanobacteria and establishes a regulatory feedback loop that couples the IF17-mediated GS inactivation to the intracellular glutamine levels. Together with the previously described sRNA NsiR4, these results show that non-coding RNA is an indispensable component in the control of nitrogen assimilation in cyanobacteria.


Assuntos
Glutamato-Amônia Ligase/genética , Glutamina/genética , Riboswitch/genética , Cianobactérias/enzimologia , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Glutamato-Amônia Ligase/biossíntese , Glutamato-Amônia Ligase/química , Regiões Promotoras Genéticas
18.
Environ Microbiol ; 21(12): 4836-4851, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31637830

RESUMO

The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community.


Assuntos
Proteínas de Bactérias/metabolismo , Microcystis/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Bactérias/genética , Processos Heterotróficos , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo , Transporte Proteico
19.
BMC Microbiol ; 19(1): 147, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262257

RESUMO

BACKGROUND: The presence and activity of CRISPR-Cas defense systems is a hallmark of many prokaryotic microorganisms. Here, the distribution of sequences related to the highly iterated palindrome 1 (HIP1) element and the DNA methylation of CGATCG motifs embedded within HIP1 as a vital part of the CRISPR1 repeat sequence was analyzed in the cyanobacterium Synechocystis sp. PCC 6803. Previously suggested functions of HIP1 include organization of chromosomal structure, DNA recombination or gene regulation, all of which could be relevant in CRISPR-Cas functionality. RESULTS: The CRISPR1 repeat-spacer array contains more than 50 CGATCG elements that are double-methylated (5mCG6mATCG) by the enzymes M.Ssp6803I and M.Ssp6803III. Hence, more than 200 possible methylation events cluster over a stretch of 3600 bp of double-stranded DNA. Bisulfite sequencing showed that these motifs were highly methylated at the m5CGATCG positions whereas specific motifs within the CRISPR1 cas genes were hypomethylated suggesting a lowered accessibility for the DNA methylase to these regions. Assays for conjugation and CRISPR1-mediated DNA interference revealed a 50% drop in conjugation efficiency in the mutant lacking the 5mC methylation of CGATCG motifs, while the highly efficient DNA interference activity was not affected by the lack of m5CGATCG DNA-methylation, nor was the capability to differentiate between self and non-self targets based on the protospacer adjacent motifs (PAMs) GTA and GTC versus the non-PAM AGC. A third DNA methylation mediated by M.Ssp6803II modifies the first cytosine in the motif GGCC yielding GGm4CC. We found a remarkable absence of GGCC motifs and hence the corresponding methylation over an 11 kb stretch encompassing all the cas genes involved in interference and crRNA maturation but not adaptation of the CRISPR1 system. CONCLUSIONS: The lack of GGCC tetranucleotides along the CRISPR1 interference and maturation genes supports the reported hybrid character of subtype I-D CRISPR-Cas systems. We report tight and very high 5mC methylation of the CRISPR1 repeat sequences. Nevertheless, cells lacking the 5mC methylation activity were unaffected in their CRISPR1-mediated interference response but the efficiency of conjugation was reduced by 50%. These results point to an unknown role of m5CGATCG DNA-methylation marks in conjugation and DNA transformation.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metilação de DNA , Synechocystis/genética , DNA , DNA (Citosina-5-)-Metiltransferases , DNA Bacteriano/genética , Motivos de Nucleotídeos , Recombinação Genética , Análise de Sequência de DNA
20.
Proc Natl Acad Sci U S A ; 113(46): 13191-13196, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799527

RESUMO

The oceanic N2-fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.


Assuntos
Homosserina/análogos & derivados , Homosserina/metabolismo , Tolerância ao Sal , Trichodesmium/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Metilação , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA