Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1099425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113753

RESUMO

Introduction: Niclosamide (Nc) is an FDA-approved anthelmintic drug that was recently identified in a drug repurposing screening to possess antiviral activity against SARS-CoV-2. However, due to the low solubility and permeability of Nc, its in vivo efficacy was limited by its poor oral absorption. Method: The current study evaluated a novel prodrug of Nc (PDN; NCATS-SM4705) in improving in vivo exposure of Nc and predicted pharmacokinetic profiles of PDN and Nc across different species. ADME properties of the prodrug were determined in humans, hamsters, and mice, while the pharmacokinetics (PK) of PDN were obtained in mice and hamsters. Concentrations of PDN and Nc in plasma and tissue homogenates were measured by UPLC-MS/MS. A physiologically based pharmacokinetic (PBPK) model was developed based on physicochemical properties, pharmacokinetic and tissue distribution data in mice, validated by the PK profiles in hamsters and applied to predict pharmacokinetic profiles in humans. Results: Following intravenous and oral administration of PDN in mice, the total plasma clearance (CLp) and volume of distribution at steady-state (Vdss) were 0.061-0.063 L/h and 0.28-0.31 L, respectively. PDN was converted to Nc in both liver and blood, improving the systemic exposure of Nc in mice and hamsters after oral administration. The PBPK model developed for PDN and in vivo formed Nc could adequately simulate plasma and tissue concentration-time profiles in mice and plasma profiles in hamsters. The predicted human CLp/F and Vdss/F after an oral dose were 2.1 L/h/kg and 15 L/kg for the prodrug respectively. The predicted Nc concentrations in human plasma and lung suggest that a TID dose of 300 mg PDN would provide Nc lung concentrations at 8- to 60-fold higher than in vitro IC50 against SARS-CoV-2 reported in cell assays. Conclusion: In conclusion, the novel prodrug PDN can be efficiently converted to Nc in vivo and improves the systemic exposure of Nc in mice after oral administration. The developed PBPK model adequately depicts the mouse and hamster pharmacokinetic and tissue distribution profiles and highlights its potential application in the prediction of human pharmacokinetic profiles.

2.
ACS Chem Neurosci ; 13(4): 510-523, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113535

RESUMO

(R,S)-Ketamine is rapidly metabolized to form a range of metabolites in vivo, including 12 unique hydroxynorketamines (HNKs) that are distinguished by a cyclohexyl ring hydroxylation at the 4, 5, or 6 position. While both (2R,6R)- and (2S,6S)-HNK readily penetrate the brain and exert rapid antidepressant-like actions in preclinical tests following peripheral administration, the pharmacokinetic profiles and pharmacodynamic actions of 10 other HNKs have not been examined. We assessed the pharmacokinetic profiles of all 12 HNKs in the plasma and brains of male and female mice and compared the relative potencies of four (2,6)-HNKs to induce antidepressant-relevant behavioral effects in the forced swim test in male mice. While all HNKs were readily brain-penetrable following intraperitoneal injection, there were robust differences in peak plasma and brain concentrations and exposures. Forced swim test immobility rank order of potency, from most to least potent, was (2R,6S)-, (2S,6R)-, (2R,6R)-, and (2S,6S)-HNK. We hypothesized that distinct structure-activity relationships and the resulting potency of each metabolite are linked to unique substitution patterns and resultant conformation of the six-membered cyclohexanone ring system. To explore this, we synthesized (5R)-methyl-(2R,6R)-HNK, which incorporates a methyl substitution on the cyclohexanone ring. (5R)-Methyl-(2R,6R)-HNK exhibited similar antidepressant-like potency to (2R,6S)-HNK. These results suggest that conformation of the cyclohexanone ring system in the (2,6)-HNKs is an important factor underlying potency and that additional engineering of this structural feature may improve the development of a new generation of HNKs. Such HNKs may represent novel drug candidates for the treatment of depression.


Assuntos
Antidepressivos , Ketamina , Animais , Antidepressivos/uso terapêutico , Comportamento Animal , Depressão/tratamento farmacológico , Feminino , Ketamina/análogos & derivados , Ketamina/farmacologia , Masculino , Camundongos
3.
Front Pharmacol ; 13: 918083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052127

RESUMO

Preclinical pharmacokinetics (PK) and In Vitro ADME properties of GS-441524, a potential oral agent for the treatment of Covid-19, were studied. GS-441524 was stable in vitro in liver microsomes, cytosols, and hepatocytes of mice, rats, monkeys, dogs, and humans. The plasma free fractions of GS-441524 were 62-78% across all studied species. The in vitro transporter study results showed that GS-441524 was a substrate of MDR1, BCRP, CNT3, ENT1, and ENT2; but not a substrate of CNT1, CNT2, and ENT4. GS-441524 had a low to moderate plasma clearance (CLp), ranging from 4.1 mL/min/kg in dogs to 26 mL/min/kg in mice; the steady state volume distribution (Vdss) ranged from 0.9 L/kg in dogs to 2.4 L/kg in mice after IV administration. Urinary excretion appeared to be the major elimination process for GS-441524. Following oral administration, the oral bioavailability was 8.3% in monkeys, 33% in rats, 39% in mice, and 85% in dogs. The PK and ADME properties of GS-441524 support its further development as an oral drug candidate.

4.
Antiviral Res ; 187: 105018, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476709

RESUMO

MBX-2168 has a mechanism of action similar to that of acyclovir (ACV) and ganciclovir (GCV), but two unique steps differentiate this drug from ACV/GCV. First, MBX-2168 is, at least partially, phosphorylated by the endogenous cellular kinase TAOK3 to a monophosphate. The second involves the removal of a moiety at the 6-position of MBX-2168-MP by adenosine deaminase like protein-1 (ADAL-1). It has been previously demonstrated that co-incubation with pentostatin (dCF), an ADAL-1 inhibitor, antagonizes the anti-viral activity of MBX-2168. We therefore hypothesize that inhibiting ADAL-1 results in a reduction of active compound produced in virus-infected cells. To test this, we examined the effect dCF has on the conversion of MBX-2168 to a triphosphate in HSV-1 and HCMV-infected cells. Our results demonstrate incubation of MBX-2168 alone or with dCF in HCMV-infected cells resulted in 53.1 ± 0.7 and 39.4 ± 1.5 pmol triphosphate/106 cells at 120 h, respectively. Incubation of MBX-2168 alone or with dCF in Vero cells resulted in 12.8 ± 0.1 and 6.7 ± 0.7 pmol triphosphate/106 cells at 24 h, respectively. HSV-1-infected Vero cells demonstrated no statistical difference in triphosphate accumulation at 24 h (13.1 ± 0.3 pmol triphosphate/106 cells). As expected, incubation with dCF resulted in the accumulation of MBX-2168-MP in both HFF (9.8 ± 0.9 pmol MBX-2168-MP/106 cells at 120 h) and Vero cells (4.7 ± 0.3 pmol MBX-2168-MP/106 cells at 24 h) while no detectable levels of monophosphate were observed in cultures not incubated with dCF. We conclude that dCF antagonizes the anti-viral effect of MBX-2168 by inhibiting the production of triphosphate, the active compound.


Assuntos
Antivirais/antagonistas & inibidores , Antivirais/farmacologia , Ciclopropanos/antagonistas & inibidores , Citomegalovirus/efeitos dos fármacos , Guanina/análogos & derivados , Herpesvirus Humano 1/efeitos dos fármacos , Pentostatina/farmacologia , Polifosfatos/metabolismo , Aciclovir/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Ciclopropanos/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Ganciclovir/farmacologia , Guanina/antagonistas & inibidores , Guanina/farmacologia , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação com Perda de Função , Masculino , Fosforilação , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA