Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(31): E4246-55, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195740

RESUMO

The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade , RNA Helicases/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Helmintos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Ligação Proteica , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Reprodução , Análise de Sequência de RNA , Regulação para Cima
2.
J Proteome Res ; 15(2): 531-9, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26751275

RESUMO

When Caenorhabditis elegans encounters unfavorable growth conditions, it enters the dauer stage, an alternative L3 developmental period. A dauer larva resumes larval development to the normal L4 stage by uncharacterized postdauer reprogramming (PDR) when growth conditions become more favorable. During this transition period, certain heterochronic genes involved in controlling the proper sequence of developmental events are known to act, with their mutations suppressing the Muv (multivulva) phenotype in C. elegans. To identify the specific proteins in which the Muv phenotype is highly suppressed, quantitative proteomic analysis with iTRAQ labeling of samples obtained from worms at L1 + 30 h (for continuous development [CD]) and dauer recovery +3 h (for postdauer development [PD]) was carried out to detect changes in protein abundance in the CD and PD states of both N2 and lin-28(n719). Of the 1661 unique proteins identified with a < 1% false discovery rate at the peptide level, we selected 58 proteins exhibiting ≥2-fold up-regulation or ≥2-fold down-regulation in the PD state and analyzed the Gene Ontology terms. RNAi assays against 15 selected up-regulated genes showed that seven genes were predicted to be involved in higher Muv phenotype (p < 0.05) in lin-28(n791), which is not seen in N2. Specifically, two genes, K08H10.1 and W05H9.1, displayed not only the highest rate (%) of Muv phenotype in the RNAi assay but also the dauer-specific mRNA expression, indicating that these genes may be required for PDR, leading to the very early onset of dauer recovery. Thus, our proteomic approach identifies and quantitates the regulatory proteins potentially involved in PDR in C. elegans, which safeguards the overall lifecycle in response to environmental changes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Marcação por Isótopo/métodos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida , Mutação , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Nutr Rev ; 82(5): 676-694, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37475189

RESUMO

A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Idoso , Sarcopenia/prevenção & controle , Qualidade de Vida , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Mitocôndrias
4.
J Nutr Biochem ; 125: 109532, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977405

RESUMO

Fuzhuan brick tea (FBT) is a post-fermented tea fermented by the fungus Eurotium cristatum and is mainly produced in Hunan Province, China. Our previous study revealed that FBT extract prevents obesity by increasing energy expenditure and mitochondrial content in mice. Therefore, in this study, we hypothesized that FBT extract could be effective in alleviating obesity-induced muscle atrophy by addressing mitochondrial dysfunction, and aimed to explore the underlying molecular mechanism of FBT extract in high-fat diet-induced obese mice. FBT extract increased skeletal muscle weight and size, myosin heavy chain isoforms, and muscle performance in obese mice. Additionally, FBT extract reduced obesity-induced intramuscular lipids, skeletal muscle inflammation, and the expression of skeletal muscle atrophy markers, and increased the expression of fibronectin type III domain-containing protein 5 in skeletal muscles. Obesity-induced skeletal muscle mitochondrial dysfunction was improved by FBT extract as analyzed through mitochondrial morphology, fatty acid oxidation, respiratory chain complexes, and mitochondrial dynamics and biogenesis. Epigallocatechin, a major bioactive compound in FBT extract, attenuated palmitic acid-induced muscle atrophy by regulating mitochondrial functions in C2C12 cells. In conclusion, FBT extract may prevent obesity-induced muscle atrophy by alleviating mitochondrial dysfunction in mice.


Assuntos
Doenças Mitocondriais , Chá , Camundongos , Animais , Camundongos Obesos , Obesidade/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Músculo Esquelético/metabolismo , Extratos Vegetais/farmacologia
5.
Phytomedicine ; 123: 155281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103316

RESUMO

BACKGROUND: Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE: To determine whether GP improves the pathology of AD and sarcopenia. METHODS: AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS: GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION: Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Iridoides , Camundongos , Animais , Doença de Alzheimer/patologia , Envelhecimento , Atrofia Muscular/tratamento farmacológico
6.
Phytomedicine ; 129: 155695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728922

RESUMO

BACKGROUND: Exercise is an effective strategy to prevent sarcopenia, but high physical inactivity in the elderly requires alternative therapeutic approaches. Exercise mimetics are therapeutic compounds that simulate the beneficial effects of exercise on skeletal muscles. However, the toxicity and adverse effects of exercise mimetics raise serious concerns. PURPOSE: We aimed to search novel plant-based alternatives to activate exercise induced-signaling. METHODS: We used open databases and luciferase assays to identify plant-derived alternatives to activate exercise-induced signaling and compared its efficacy to mild intensity continuous training (MICT) in aged C57BL/6 mice. The nineteen-month-old mice were either fed an experimental diet supplemented with the isolated alternative or subjected to MICT for up to 21 mo of age. RESULTS: Our analysis revealed that Chrysanthemum zawadskii Herbich var latillobum (Maxim.) Kitamura (CZH), a medicinal plant rich in linarin, is a novel activator of peroxisome proliferator-activated receptor δ (PPARδ) and estrogen-related receptor γ (ERRγ), key regulators of exercise-induced positive effects on muscles. CZH supplementation ameliorated the loss of muscle function and mass, and increased PPARδ and ERRγ expression in mouse muscles. CZH also improved mitochondrial functions and proteostasis in aged mice, similar to MICT. Furthermore, CZH and linarin induced the activation of Sestrin 1, a key mediator of exercise benefits, in muscle. Silencing Sestrin 1 negated the increase in myogenesis and mitochondrial respiration by CZH and linarin in primary myoblasts from old mice. CONCLUSION: Our findings suggest the potential of CZH as a novel plant-derived alternative to activate exercise-induced signaling for preventing sarcopenia in sedentary older adults. This could offer a safer therapeutic option for sarcopenia treatment.


Assuntos
Chrysanthemum , Camundongos Endogâmicos C57BL , Sarcopenia , Transdução de Sinais , Animais , Chrysanthemum/química , Transdução de Sinais/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Masculino , PPAR delta/metabolismo , Extratos Vegetais/farmacologia , Receptores de Estrogênio/metabolismo , Humanos , Envelhecimento/efeitos dos fármacos , Glicosídeos
7.
Biomed Pharmacother ; 170: 115913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154270

RESUMO

The plant Justicia procumbens is traditionally used in Asia to treat fever, cough, and pain. Previous studies have reported its anticancer and anti-asthmatic properties. However, its potential for preventing androgenic alopecia (AGA) has not yet been reported. AGA is a widespread hair loss condition primarily caused by male hormones. In this study, we examined the hair loss-preventing effects of an aqueous extract of J. procumbens (JPAE) using human hair follicle dermal papilla cell (HFDPC) and a mouse model of testosterone-induced AGA. JPAE treatment increased HFDPC proliferation by activating the Wnt/ß-catenin signaling pathway. Additionally, JPAE increased the expression of Wnt targets, such as cyclin D1 and VEGF, by promoting the translocation of ß-catenin to the nucleus. Administration of JPAE reduced hair loss, increased hair thickness, and enhanced hair shine in an AGA mouse model. Furthermore, it increased the expression of p-GSK-3ß and ß-catenin in the dorsal skin of the mice. These findings imply that JPAE promotes the proliferation of HFDPC and prevents hair loss in an AGA mouse model. JPAE can therefore be used as a functional food and natural treatment option for AGA to prevent hair loss.


Assuntos
Justicia , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Alopecia/induzido quimicamente , Alopecia/prevenção & controle , Alopecia/metabolismo , Cabelo/metabolismo , Via de Sinalização Wnt
8.
Chin Med ; 19(1): 20, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287373

RESUMO

BACKGROUND: Muscle atrophy is characterized by decreased muscle mass, function, and strength. Synthetic glucocorticoids, including dexamethasone (Dexa), are commonly used to treat autoimmune diseases. However, prolonged exposure of Dexa with high dose exerts severe side effects, including muscle atrophy. The purpose of this study was to investigate whether Gromwell root extract (GW) can prevent Dexa-induced muscle atrophy in C2C12 cells and mice and to characterize the composition of GW to identify bioactive compounds. METHODS: For in vitro experiments, GW (0.5 and 1 µg/mL) or lithospermic acid (LA, 5 and 10 µM) was added to C2C12 myotubes on day 4 of differentiation and incubated for 24 h, along with 50 µM Dexa. For in vivo experiment, four-week-old male C57BL/6 mice were randomly divided into the four following groups (n = 7/group): Con group, Dexa group, GW0.1 group, and GW0.2 group. Mice were fed experimental diets of AIN-93 M with or without 0.1 or 0.2% GW for 4 weeks. Subsequently, muscle atrophy was induced by administering an intraperitoneal injection of Dexa at a dose of 15 mg/kg/day for 38 days, in conjunction with dietary intake. RESULTS: In Dexa-induced myotube atrophy, treatment with GW increased myotube diameter, reduced the expression of muscle atrophy markers, and enhanced the expression of myosin heavy chain (MHC) isoforms in C2C12 cells. Supplementation with the GW improved muscle function and performance in mice with Dexa-induced muscle atrophy, evidenced in the grip strength and running tests. The GW group showed increased lean body mass, skeletal muscle mass, size, and myosin heavy chain isoform expression, along with reduced skeletal muscle atrophy markers in Dexa-injected mice. Supplementation with GW increased protein synthesis and decreased protein degradation through the Akt/mammalian target of rapamycin and glucocorticoid receptor/forkhead box O3 signaling pathways, respectively. We identified LA as a potential bioactive component of the GW. LA treatment increased myotube diameter and decreased the expression of muscle atrophy markers in Dexa-induced C2C12 cells. CONCLUSIONS: These findings underscore the potential of the GW in preventing Dexa-induced skeletal muscle atrophy and highlight the contribution of LA to its effects.

9.
BMB Rep ; 56(10): 537-544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482753

RESUMO

The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DRinduced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human. [BMB Reports 2023; 56(10): 537-544].


Assuntos
Restrição Calórica , Longevidade , Animais , Humanos , Envelhecimento , Transdução de Sinais , Dieta
10.
Aging (Albany NY) ; 15(1): 21-36, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622277

RESUMO

Dietary restriction (DR) is a highly effective and reproducible intervention that prolongs longevity in many organisms. The molecular mechanism of action of DR is tightly connected with the immune system; however, the detailed mechanisms and effective downstream factors of immunity that mediate the beneficial effects of DR on aging remain unknown. Here, to investigate the immune signaling that mediates DR effects, we used Caenorhabditis elegans, which has been widely used in research, to understand the underlying molecular mechanisms of aging and immunity. We found that the F-box gene, fbxc-58, a regulator of the innate immune response, is a novel mediator of DR effects on extending the health span of C. elegans. fbxc-58 is upregulated by DR and is necessary for DR-induced lifespan extension and physical health improvement in C. elegans. Furthermore, through DR, fbxc-58 prevents disintegration of the mitochondrial network in body wall muscle during aging. We found that fbxc-58 is a downstream target of the ZIP-2 and PHA-4 transcription factors, the well-known DR mediator, and fbxc-58 extends longevity in DR through an S6 kinase-dependent pathway. We propose that the novel DR effector, fbxc-58, could provide a new mechanistic understanding of the effects of DR on healthy aging and elucidate the signaling mechanisms that link immunity and DR effects with aging.


Assuntos
Proteínas de Caenorhabditis elegans , Envelhecimento Saudável , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Imunidade Inata/fisiologia
11.
FASEB Bioadv ; 5(12): 521-527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094156

RESUMO

The beneficial effects of Akkermansia muciniphila (Akk) on gut health and inflammation reduction have been demonstrated; however, scientific evidence of hair growth enhancement by Akk has not been reported. Therefore, this study was undertaken to investigate the effect of Akk on improving testosterone-mediated hair growth inhibition. Hair growth inhibition was induced through subcutaneous injection of testosterone into the shaved dorsal skin of C57BL/6 male mice. Live and pasteurized Akk were orally administered at a concentration of 1 × 108 colony-forming unit. After 5 weeks, hair length and skin tissues were analyzed. The live and pasteurized Akk significantly stimulated hair growth, countering the inhibitory effect of testosterone compared to the testosterone-alone group. Hematoxylin and eosin staining revealed a significant increase in hair follicle size in the Akk-treated group. An increase in ß-catenin levels, which are associated with hair growth and cell cycle progression, was also observed. Moreover, the Akk-treated group exhibited increased levels of fibroblast growth factors, including Fgf7, Igf1, Fgf7, Fgf10, and Fgf21. However, no significant difference was observed between the live and pasteurized Akk groups. These results underscore the potential of live and pasteurized Akk in improving testosterone-mediated hair growth inhibition.

12.
J Gerontol A Biol Sci Med Sci ; 78(7): 1108-1115, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821434

RESUMO

The human life span has been markedly extended since the 1900s, but it has not brought healthy aging to everyone. This increase in life expectancy without an increase in healthspan is a major global concern that imposes considerable health care budgets and degrades the quality of life of older adults. Dietary interventions are a promising strategy to increase healthspan. In this study, we evaluated whether a Gardenia jasminoides Ellis fruit ethanol extract (GFE) increases the life span of Caenorhabditis elegans (C. elegans). Treatment with 10 mg/mL GFE increased the life span by 27.1% when compared to the vehicle group. GFE (10 mg/mL) treatment improved healthspan-related markers (pharyngeal pumping, muscle quality, age-pigment, and reactive oxygen species accumulation) and exerted a protective effect against amyloid ß 1-42 toxicity. These effects of GFE are related to the inhibition of insulin/IGF-1 signaling and activation of SKN-1/Nrf, thereby promoting the expression of stress resistance-related genes. In addition, treatment with 10 mM geniposide, the most abundant component of GFE, improved healthspan-related markers and increased life span by 18.55% when compared to the vehicle group. Collectively, these findings demonstrate that GFE and its component geniposide increase the life span along with healthspan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Gardenia , Animais , Humanos , Idoso , Caenorhabditis elegans , Frutas , Peptídeos beta-Amiloides , Qualidade de Vida , Proteínas de Caenorhabditis elegans/genética , Longevidade
13.
Front Pharmacol ; 14: 1172084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229245

RESUMO

Alopecia, regardless of gender, exacerbates psychological stress in those affected. The rising prevalence of alopecia has fueled a research interest in preventing hair loss. This study investigates the potential of millet seed oil (MSO) in promoting the proliferation of hair follicle dermal papilla cells (HFDPC) and stimulating hair growth in animals with testosterone-dependent hair growth inhibition as part of a study on dietary treatments to improve hair growth. MSO-treated HFDPC significantly increased cell proliferation and phosphorylation of AKT, S6K1, and GSK3ß proteins. This induces ß-catenin, a downstream transcription factor, to translocate to the nucleus and increase the expression of factors related to cell growth. In a C57BL/6 mice model in which hair growth was inhibited by subcutaneous testosterone injection after shaving the dorsal skin, oral administration of MSO stimulated hair growth in the subject mice by increasing the size and number of hair follicles. These results suggest that MSO is a potent agent that may help prevent or treat androgenetic alopecia by promoting hair growth.

14.
Front Pharmacol ; 13: 891762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865958

RESUMO

Skeletal muscle atrophy is characterized by reduced muscle function and size. Oxidative stress contributes to muscle atrophy but can be treated with antioxidants. This study investigated the antioxidant activity of a castor oil plant leaf (Ricinus communis L.) extract (RC) and its effects on muscle atrophy. Rutin was identified as the major compound among the thirty compounds identified in RC via LC-MS/MS and was found to inhibit dexamethasone (DEX)-induced muscle atrophy and mitochondrial oxidative stress. Rutin-rich RC showed DPPH and ABTS radical scavenging activities and efficiently reduced the DEX-induced myotube atrophy and mitochondrial oxidative damage in C2C12 cells. RC supplementation prevented the loss of muscle function and muscle mass in DEX-administered mice and ameliorated DEX-induced oxidative stress via Nrf2 signaling. Taken together, both RC and rutin ameliorated muscle atrophy and helped in maintaining redox homeostasis; hence, rutin-rich RC could be a promising functional food that is beneficial for muscle health.

15.
Food Res Int ; 157: 111439, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761679

RESUMO

Schisandra chinensis fruit (Omiza in Korean), used for the production tea or liquor, and is known to enhance skeletal muscle function. However, the effect of Omiza extract (OM) on obesity-induced skeletal muscle atrophy remains unclear. This study investigated the effect of OM on skeletal muscle mass and performance in obese mice. OM increased skeletal muscle weight, size and improved skeletal muscle performance. Further, it also suppressed obesity-induced increases in proinflammatory cytokines, MuRF1, and Atrogin1 in mouse skeletal muscle and enhanced the expression of MHC and the phosphorylation of AKT/mTOR signaling molecules, thereby suppressing myostatin expression and regulating Smad-FOXO signaling. Schizandrin B, a major component of OM inhibited palmitic acid induced atrophy in C2C12 cells via Smad-FOXO regulation, suggesting that it partially contributed to the effects of OM against obesity-induced muscle atrophy. Taken together, OM may have the potential to prevent and treat obesity-induced muscle atrophy.


Assuntos
Schisandra , Animais , Ciclo-Octanos , Frutas/metabolismo , Lignanas , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Compostos Policíclicos
16.
J Food Biochem ; 46(12): e14395, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093909

RESUMO

Codium fragile (C. fragile) is a marine alga with high functional food potential. Recent studies have proven C. fragile extract (CFE) effective against obesity. However, the exact underlying mechanism of CFE's anti-obesity effects remains unclear. Herein, CFE was orally administered to male C57BL/6 mice for 7 weeks, along with a high-fat diet. CFE (100 mg/kg) effectively induced weight loss, lowered serum cholesterol levels, and suppressed adipocyte differentiation in white adipose tissue (WAT). Furthermore, CFE effectively reduced hepatic total triglyceride, cholesterol, and lipid levels, while significantly improving liver size and color. mRNA expression analysis in WAT and liver tissue revealed that CFE significantly suppressed the expression of PPARγ and aP-2 in adipocyte differentiation, and SREBP-1c and FAS in de novo lipogenesis, suggesting that CFE's anti-obesity effect is exerted by gene inhibition. PRACTICAL APPLICATIONS: Research on marine plants with anti-obesity effects has been increasing recently. This study demonstrated that C. fragile extract (CFE) is effective in reducing body weight and suppressing adipocyte differentiation, along with the improvement of fatty liver in mice fed with a high-fat diet (HFD). The anti-obesity effect of CFE was exhibited by the down-regulation of adipogenesis and lipogenesis, respectively. Based on these results, C. fragile could be useful, not only to effectively combat obesity but also in improving obesity-induced liver dysfunction.


Assuntos
Fígado Gorduroso , Lipogênese , Animais , Camundongos , Incidência , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/genética , Colesterol
17.
Aging (Albany NY) ; 12(9): 8202-8220, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350153

RESUMO

Physiological stresses, such as pathogen infection, are detected by "cellular Surveillance Activated Detoxification and Defenses" (cSADD) systems that trigger host defense responses. Aging is associated with physiological stress, including impaired mitochondrial function. Here, we investigated whether an endogenous cSADD pathway is activated during aging in C. elegans. We provide evidence that the transcription factor ZIP-2, a well-known immune response effector in C. elegans, is activated in response to age-associated mitochondrial dysfunction. ZIP-2 mitigates multiple aging phenotypes, including mitochondrial disintegration and reduced motility of the pharynx and intestine. Importantly, our data suggest that ZIP-2 is activated during aging independently of bacterial infection and of the transcription factors ATFS-1 and CEBP-2. Thus, ZIP-2 is a key component of an endogenous pathway that delays aging phenotypes in C. elegans. Our data suggest that aging coopted a compensatory strategy for regulation of aging process as a guarded process rather than a simple passive deterioration process.


Assuntos
Envelhecimento/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interações Hospedeiro-Patógeno/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais , Fatores de Transcrição
18.
Aging Cell ; 18(5): e12982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215146

RESUMO

Dietary restriction (DR) robustly delays the aging process in all animals tested so far. DR slows aging by negatively regulating the target of rapamycin (TOR) and S6 kinase (S6K) signaling pathway and thus inhibiting translation. Translation inhibition in C. elegans is known to activate the innate immune signal ZIP-2. Here, we show that ZIP-2 is activated in response to DR and in feeding-defective eat-2 mutants. Importantly, ZIP-2 contributes to the improvements in longevity and healthy aging, including mitochondrial integrity and physical ability, mediated by DR in C. elegans. We further show that ZIP-2 is activated upon inhibition of TOR/S6K signaling. However, DR-mediated activation of ZIP-2 does not require the TOR/S6K effector PHA-4/FOXA. Furthermore, zip-2 was not activated or required for longevity in daf-2 mutants, which mimic a low nutrition status. Thus, DR appears to activate ZIP-2 independently of PHA-4/FOXA and DAF-2. The link between DR, aging, and immune activation provides practical insight into the DR-induced benefits on health span and longevity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Restrição Calórica , Dieta/efeitos adversos , Envelhecimento Saudável/imunologia , Animais , Caenorhabditis elegans/imunologia
19.
Exp Mol Med ; 50(4): 1-10, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29622768

RESUMO

We have previously shown that phospholipase D (PLD) downregulation accelerates cellular senescence, which is widely believed to play an important role in aging, by stimulating reactive oxygen species (ROS) accumulation in human cells. In this study, we examined the role of PLD in aging using the nematode Caenorhabditis elegans. The mRNA level of pld-1 was found to be inversely correlated with aging. RNAi-mediated knockdown of pld-1 expression in nematodes enhanced ROS and lipofuscin accumulation and decreased lifespan, motility, and resistance to stress compared to that in nematodes treated with control RNAi. Pld-1 knockdown repressed the long lifespan of age-1 and akt-1 mutants but did not further reduce the short lifespan of daf-16 mutants, suggesting that PLD functions between AKT-1 and DAF-16. The ROS scavenger N-acetyl-L-cysteine, a PLD effector phosphatidic acid and a possible CK2 activator spermidine attenuated the lifespan shortening and age-related biomarkers triggered by pld-1 knockdown. Pld-1 RNAi downregulated the expression of DAF-16 target genes such as sod-3, dod-11, and mtl-1 in nematodes. In human cells, furthermore, PLD2 downregulation decreased the transcription of FoxO3a target genes (Cu/ZnSOD, MnSOD, catalase, thioredoxin-2, and peroxiredoxin-5), whereas ectopic PLD2 expression elevated the mRNA levels of these antioxidant genes. Taken together, these results indicated that PLD downregulation shortens longevity and induces age-related biomarkers through ROS accumulation by inhibiting the DAF-16/FoxO3a pathway in nematodes.


Assuntos
Caenorhabditis elegans/fisiologia , Longevidade , Fosfolipase D/metabolismo , Alelos , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Genes Reporter , Resposta ao Choque Térmico , Locomoção , Mutação , Estresse Oxidativo , Fosfolipase D/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
20.
Sci Rep ; 7(1): 7260, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775361

RESUMO

Animals use pheromones as a conspecific chemical language to respond appropriately to environmental changes. The soil nematode Caenorhabditis elegans secretes ascaroside pheromones throughout the lifecycle, which influences entry into dauer phase in early larvae, in addition to sexual attraction and aggregation. In adult hermaphrodites, pheromone sensory signals perceived by worms usually elicit repulsion as an initial behavioral signature. However, the molecular mechanisms underlying neuronal pheromone sensory process from perception to repulsion in adult hermaphrodites remain poorly understood. Here, we show that pheromone signals perceived by GPA-3 is conveyed through glutamatergic neurotransmission in which neuronal DAF-16/FoxO plays an important modulatory role by controlling glutaminase gene expression. We further provide evidence that this modulatory role for DAF-16/FoxO seems to be conserved evolutionarily by electro-physiological study in mouse primary hippocampal neurons that are responsible for glutamatergic neurotransmission. These findings provide the basis for understanding the nematode pheromone signaling, which seems crucial for adaptation of adult hermaphrodites to changes in environmental condition for survival.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Neurônios/metabolismo , Feromônios/metabolismo , Transdução de Sinais , Animais , Comportamento Animal , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA