Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 601(1): 171-193, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398712

RESUMO

In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Substância Negra/metabolismo , Mesencéfalo , Potenciais de Ação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38926603

RESUMO

Converging evidence indicates that both dopamine and glutamate neurotransmission within the nucleus accumbens (NAc) play a role in psychostimulant self-administration and relapse in rodent models. Increased NAc dopamine release from ventral tegmental area (VTA) inputs is critical to psychostimulant self-administration and NAc glutamate release from prelimbic prefrontal cortex (PFC) inputs synapsing on medium spiny neurons (MSNs) is critical to reinstatement of psychostimulant-seeking after extinction. The regulation of the activity of MSNs by VTA dopamine inputs has been extensively studied, and recent findings have demonstrated that VTA glutamate neurons target the NAc medial shell. Here, we determined whether the mesoaccumbal glutamatergic pathway plays a role in psychostimulant conditioned place preference and self-administration in mice. We used optogenetics to induce NAc release of glutamate from VTA inputs during the acquisition, expression, and reinstatement phases of cocaine- or methamphetamine-induced conditioned place preference (CPP), and during priming-induced reinstatement of cocaine-seeking behavior. We found that NAc medial shell release of glutamate resulting from the activation of VTA glutamatergic fibers did not affect the acquisition of cocaine-induced CPP, but it blocked the expression, stress- and priming-induced reinstatement of cocaine- and methamphetamine CPP, as well as it blocked the priming-induced reinstatement of cocaine-seeking behavior after extinction. These findings indicate that in contrast to the well-recognized mesoaccumbal dopamine system that is critical to psychostimulant reward and relapse, there is a parallel mesoaccumbal glutamatergic system that suppresses reward and psychostimulant-seeking behavior.

3.
Nat Commun ; 15(1): 403, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195566

RESUMO

The lateral hypothalamus (LH) is involved in feeding behavior and defense responses by interacting with different brain structures, including the Ventral Tegmental Area (VTA). Emerging evidence indicates that LH-glutamatergic neurons infrequently synapse on VTA-dopamine neurons but preferentially establish multiple synapses on VTA-glutamatergic neurons. Here, we demonstrated that LH-glutamatergic inputs to VTA promoted active avoidance, long-term aversion, and escape attempts. By testing feeding in the presence of a predator, we observed that ongoing feeding was decreased, and that this predator-induced decrease in feeding was abolished by photoinhibition of the LH-glutamatergic inputs to VTA. By VTA specific neuronal ablation, we established that predator-induced decreases in feeding were mediated by VTA-glutamatergic neurons but not by dopamine or GABA neurons. Thus, we provided evidence for an unanticipated neuronal circuitry between LH-glutamatergic inputs to VTA-glutamatergic neurons that plays a role in prioritizing escape, and in the switch from feeding to escape in mice.


Assuntos
Região Hipotalâmica Lateral , Área Tegmentar Ventral , Animais , Camundongos , Neurônios GABAérgicos , Neurônios Dopaminérgicos , Afeto
4.
Elife ; 102021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34409942

RESUMO

Midbrain dopamine (DA) neurons are slow pacemakers that maintain extracellular DA levels. During the interspike intervals, subthreshold slow depolarization underlies autonomous pacemaking and determines its rate. However, the ion channels that determine slow depolarization are unknown. Here we show that TRPC3 and NALCN channels together form sustained inward currents responsible for the slow depolarization of nigral DA neurons. Specific TRPC3 channel blockade completely blocked DA neuron pacemaking, but the pacemaking activity in TRPC3 knock-out (KO) mice was perfectly normal, suggesting the presence of compensating ion channels. Blocking NALCN channels abolished pacemaking in both TRPC3 KO and wild-type mice. The NALCN current and mRNA and protein expression are increased in TRPC3 KO mice, indicating that NALCN compensates for TRPC3 currents. In normal conditions, TRPC3 and NALCN contribute equally to slow depolarization. Therefore, we conclude that TRPC3 and NALCN are two major leak channels that drive robust pacemaking in nigral DA neurons.


Assuntos
Relógios Biológicos/fisiologia , Neurônios Dopaminérgicos/fisiologia , Canais Iônicos/genética , Proteínas de Membrana/genética , Neurônios/fisiologia , Substância Negra/fisiologia , Canais de Cátion TRPC/genética , Potenciais de Ação , Animais , Relógios Biológicos/genética , Neurônios Dopaminérgicos/citologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Substância Negra/citologia
5.
Br J Pharmacol ; 177(16): 3795-3810, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436268

RESUMO

BACKGROUND AND PURPOSE: NALCN is a Na+ leak, GPCR-activated channel that regulates the resting membrane potential and neuronal excitability. Despite numerous possible roles for NALCN in both normal physiology and disease processes, lack of specific blockers hampers further investigation. EXPERIMENTAL APPROACH: The effect of N-benzhydryl quinuclidine compounds on NALCN channels was demonstrated using whole-cell patch-clamp recordings in HEK293T cells overexpressing NALCN and acutely isolated nigral dopaminergic neurons that express NALCN endogenously. Src kinase activity was measured using a Src kinase assay kit, and voltage and current-clamp recordings from nigral dopaminergic neurons were used to measure NALCN currents and membrane potentials. KEY RESULTS: N-benzhydryl quinuclidine compounds inhibited NALCN channels without affecting TRPC channels, another important route for Na+ leak. In HEK293T cells overexpressing NALCN, N-benzhydryl quinuclidine compounds potently suppressed muscarinic M3 receptor-activated NALCN currents. Structure-function relationship studies suggest that the quinuclidine ring with a benzhydryl group imparts the ability to inhibit NALCN currents regardless of Src family kinases. Moreover, N-benzhydryl quinuclidine compounds inhibited not only GPCR-activated NALCN currents but also background Na+ leak currents and hyperpolarized the membrane potential in native midbrain dopaminergic neurons that express NALCN endogenously. CONCLUSION AND IMPLICATIONS: These findings suggest that N-benzhydryl quinuclidine compounds have a pharmacological potential to directly inhibit NALCN channels and could be a useful tool to investigate functions of NALCN channels.


Assuntos
Canais Iônicos , Proteínas de Membrana , Compostos Benzidrílicos , Células HEK293 , Humanos , Quinuclidinas , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA