Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 58(4): 1110-1122, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36757267

RESUMO

BACKGROUND: Bright-blood lumen and black-blood vessel wall imaging are required for the comprehensive assessment of aortic disease. These images are usually acquired separately, resulting in long examinations and potential misregistration between images. PURPOSE: To characterize the performance of an accelerated and respiratory motion-compensated three-dimensional (3D) cardiac MRI technique for simultaneous contrast-free aortic lumen and vessel wall imaging with an interleaved T2 and inversion recovery prepared sequence (iT2Prep-BOOST). STUDY TYPE: Prospective. POPULATION: A total of 30 consecutive patients with aortopathy referred for a clinically indicated cardiac MRI examination (9 females, mean age ± standard deviation: 32 ± 12 years). FIELD STRENGTH/SEQUENCE: 1.5-T; bright-blood MR angiography (diaphragmatic navigator-gated T2-prepared 3D balanced steady-state free precession [bSSFP], T2Prep-bSSFP), breath-held black-blood two-dimensional (2D) half acquisition single-shot turbo spin echo (HASTE), and 3D bSSFP iT2Prep-BOOST. ASSESSMENT: iT2Prep-BOOST bright-blood images were compared to T2prep-bSSFP images in terms of aortic vessel dimensions, lumen-to-myocardium contrast ratio (CR), and image quality (diagnostic confidence, vessel sharpness and presence of artifacts, assessed by three cardiologists on a 4-point scale, 1: nondiagnostic to 4: excellent). The iT2Prep-BOOST black-blood images were compared to 2D HASTE images for quantification of wall thickness. A visual comparison between computed tomography (CT) and iT2Prep-BOOST was performed in a patient with chronic aortic dissection. STATISTICAL TESTS: Paired t-tests, Wilcoxon signed-rank tests, intraclass correlation coefficient (ICC), Bland-Altman analysis. A P value < 0.05 was considered statistically significant. RESULTS: Bright-blood iT2Prep-BOOST resulted in significantly improved image quality (mean ± standard deviation 3.8 ± 0.5 vs. 3.3 ± 0.8) and CR (2.9 ± 0.8 vs. 1.8 ± 0.5) compared with T2Prep-bSSFP, with a shorter scan time (7.8 ± 1.7 minutes vs. 12.9 ± 3.4 minutes) while providing a complementary 3D black-blood image. Aortic lumen diameter and vessel wall thickness measurements in bright-blood and black-blood images were in good agreement with T2Prep-bSSFP and HASTE images (<0.02 cm and <0.005 cm bias, respectively) and good intrareader (ICC > 0.96) and interreader (ICC > 0.94) agreement was observed for all measurements. DATA CONCLUSION: iT2Prep-BOOST might enable time-efficient simultaneous bright- and black-blood aortic imaging, with improved image quality compared to T2Prep-bSSFP and HASTE imaging, and comparable measurements for aortic wall and lumen dimensions. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Assuntos
Doenças da Aorta , Angiografia por Ressonância Magnética , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Doenças da Aorta/diagnóstico por imagem , Miocárdio , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes
2.
J Cardiovasc Magn Reson ; 25(1): 52, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779192

RESUMO

BACKGROUND: Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS: Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS: There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS: Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.


Assuntos
Coração , Angiografia por Ressonância Magnética , Humanos , Feminino , Angiografia por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Valor Preditivo dos Testes , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Angiografia Coronária/métodos , Imageamento Tridimensional
3.
J Cardiovasc Magn Reson ; 24(1): 26, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35399091

RESUMO

BACKGROUND: Coronary artery disease (CAD) is the single most common cause of death worldwide. Recent technological developments with coronary cardiovascular magnetic resonance angiography (CCMRA) allow high-resolution free-breathing imaging of the coronary arteries at submillimeter resolution without contrast in a predictable scan time of ~ 10 min. The objective of this study was to determine the diagnostic accuracy of high-resolution CCMRA for CAD detection against the gold standard of invasive coronary angiography (ICA). METHODS: Forty-five patients (15 female, 62 ± 10 years) with suspected CAD underwent sub-millimeter-resolution (0.6 mm3) non-contrast CCMRA at 1.5T in this prospective clinical study from 2019-2020. Prior to CCMR, patients were given an intravenous beta blockers to optimize heart rate control and sublingual glyceryl trinitrate to promote coronary vasodilation. Obstructive CAD was defined by lesions with ≥ 50% stenosis by quantitative coronary angiography on ICA. RESULTS: The mean duration of image acquisition was 10.4 ± 2.1 min. On a per patient analysis, the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 95% (75-100), 54% (36-71), 60% (42-75) and 93% (70-100), respectively. On a per vessel analysis the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 80% (63-91), 83% (77-88), 49% (36-63) and 95% (90-98), respectively. CONCLUSION: As an important step towards clinical translation, we demonstrated a good diagnostic accuracy for CAD detection using high-resolution CCMRA, with high sensitivity and negative predictive value. The positive predictive value is moderate, and combination with CMR stress perfusion may improve the diagnostic accuracy. Future multicenter evaluation is now required.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Imagem de Perfusão do Miocárdio , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Feminino , Humanos , Angiografia por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade
4.
Radiology ; 298(3): 578-586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464179

RESUMO

Background Clinical guidelines recommend the use of established T2 mapping sequences to detect and quantify myocarditis and edema, but T2 mapping is performed in two dimensions with limited coverage and repetitive breath holds. Purpose To assess the reproducibility of an accelerated free-breathing three-dimensional (3D) whole-heart T2 MRI mapping sequence in phantoms and participants without a history of cardiac disease and to investigate its clinical performance in participants with suspected myocarditis. Materials and Methods Eight participants (three women, mean age, 31 years ± 4 [standard deviation]; cohort 1) without a history of cardiac disease and 25 participants (nine women, mean age, 45 years ± 17; cohort 2) with clinically suspected myocarditis underwent accelerated free-breathing 3D whole-heart T2 mapping with 100% respiratory scanning efficiency at 1.5 T. The participants were enrolled from November 2018 to August 2020. Three repeated scans were performed on 2 separate days in cohort 1. Segmental variations in T2 relaxation times of the left ventricular myocardium were assessed, and intrasession and intersession reproducibility were measured. In cohort 2, segmental myocardial T2 values, detection of focal inflammation, and map quality were compared with those obtained from clinical breath-hold two-dimensional (2D) T2 mapping. Statistical differences were assessed using the nonparametric Mann-Whitney and Kruskal-Wallis tests, whereas the paired Wilcoxon signed-rank test was used to assess subjective scores. Results Whole-heart T2 maps were acquired in a mean time of 6 minutes 53 seconds ± 1 minute 5 seconds at 1.5 mm3 resolution. Breath-hold 2D and free-breathing 3D T2 mapping had similar intrasession (mean T2 change of 3.2% and 2.3% for 2D and 3D, respectively) and intersession (4.8% and 4.9%, respectively) reproducibility. The two T2 mapping sequences showed similar map quality (P = .23, cohort 2). Abnormal myocardial segments were identified with confidence (score 3) in 14 of 25 participants (56%) with 3D T2 mapping and only in 10 of 25 participants (40%) with 2D T2 mapping. Conclusion High-spatial-resolution three-dimensional (3D) whole-heart T2 mapping shows high intrasession and intersession reproducibility and helps provide T2 myocardial characterization in agreement with clinical two-dimensional reference, while enabling 3D assessment of focal disease with higher confidence. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Friedrich in this issue.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Miocardite/diagnóstico por imagem , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 86(4): 1983-1996, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34096095

RESUMO

PURPOSE: To develop an end-to-end deep learning technique for nonrigid motion-corrected (MoCo) reconstruction of ninefold undersampled free-breathing whole-heart coronary MRA (CMRA). METHODS: A novel deep learning framework was developed consisting of a diffeomorphic registration network and a motion-informed model-based deep learning (MoDL) reconstruction network. The registration network receives as input highly undersampled (~22×) respiratory-resolved images and outputs 3D nonrigid respiratory motion fields between the images. The motion-informed MoDL performs MoCo reconstruction from undersampled data using the predicted motion fields. The whole deep learning framework, termed as MoCo-MoDL, was trained end-to-end in a supervised manner for simultaneous 3D nonrigid motion estimation and MoCo reconstruction. MoCo-MoDL was compared with a state-of-the-art nonrigid MoCo CMRA reconstruction technique in 15 retrospectively undersampled datasets and 9 prospectively undersampled acquisitions. RESULTS: The acquisition time for ninefold accelerated CMRA was ~2.5 min. The reconstruction time was ~22 s for the proposed MoCo-MoDL and ~35 min for the conventional approach. MoCo-MoDL achieved higher peak SNR (27.86 ± 3.00 vs. 26.71 ± 2.79; P < .05) and structural similarity (0.78 ± 0.06 vs. 0.75 ± 0.06; P < .05) than the conventional approach. Similar vessel length and visual image quality score were obtained with the 2 methods, whereas improved vessel sharpness was observed with MoCo-MoDL. CONCLUSION: An end-to-end deep learning approach was introduced for simultaneous nonrigid motion estimation and MoCo reconstruction of highly undersampled free-breathing whole-heart CMRA. The rapid free-breathing CMRA acquisition together with the fast reconstruction of the proposed approach promises easy integration into clinical workflow.


Assuntos
Aprendizado Profundo , Angiografia por Ressonância Magnética , Coração , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Movimento (Física) , Estudos Retrospectivos
6.
Magn Reson Med ; 86(5): 2837-2852, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34240753

RESUMO

PURPOSE: To develop and evaluate a novel and generalizable super-resolution (SR) deep-learning framework for motion-compensated isotropic 3D coronary MR angiography (CMRA), which allows free-breathing acquisitions in less than a minute. METHODS: Undersampled motion-corrected reconstructions have enabled free-breathing isotropic 3D CMRA in ~5-10 min acquisition times. In this work, we propose a deep-learning-based SR framework, combined with non-rigid respiratory motion compensation, to shorten the acquisition time to less than 1 min. A generative adversarial network (GAN) is proposed consisting of two cascaded Enhanced Deep Residual Network generator, a trainable discriminator, and a perceptual loss network. A 16-fold increase in spatial resolution is achieved by reconstructing a high-resolution (HR) isotropic CMRA (0.9 mm3 or 1.2 mm3 ) from a low-resolution (LR) anisotropic CMRA (0.9 × 3.6 × 3.6 mm3 or 1.2 × 4.8 × 4.8 mm3 ). The impact and generalization of the proposed SRGAN approach to different input resolutions and operation on image and patch-level is investigated. SRGAN was evaluated on a retrospective downsampled cohort of 50 patients and on 16 prospective patients that were scanned with LR-CMRA in ~50 s under free-breathing. Vessel sharpness and length of the coronary arteries from the SR-CMRA is compared against the HR-CMRA. RESULTS: SR-CMRA showed statistically significant (P < .001) improved vessel sharpness 34.1% ± 12.3% and length 41.5% ± 8.1% compared with LR-CMRA. Good generalization to input resolution and image/patch-level processing was found. SR-CMRA enabled recovery of coronary stenosis similar to HR-CMRA with comparable qualitative performance. CONCLUSION: The proposed SR-CMRA provides a 16-fold increase in spatial resolution with comparable image quality to HR-CMRA while reducing the predictable scan time to <1 min.


Assuntos
Aprendizado Profundo , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Coração , Humanos , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos
7.
Magn Reson Med ; 85(4): 2069-2083, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201524

RESUMO

PURPOSE: To develop a novel gadolinium-free model-based quantitative magnetization transfer (qMT) technique to assess macromolecular changes associated with myocardial fibrosis. METHODS: The proposed sequence consists of a two-dimensional breath-held dual shot interleaved acquisition of five MT-weighted (MTw) spoiled gradient echo images, with variable MT flip angles (FAs) and off-resonance frequencies. A two-pool exchange model and dictionary matching were used to quantify the pool size ratio (PSR) and bound pool T2 relaxation ( T2B ). The signal model was developed and validated using 25 MTw images on a bovine serum albumin (BSA) phantom and in vivo human thigh muscle. A protocol with five MTw images was optimized for single breath-hold cardiac qMT imaging. The proposed sequence was tested in 10 healthy subjects and 5 patients with myocardial fibrosis and compared to late gadolinium enhancement (LGE). RESULTS: PSR values in the BSA phantom were within the confidence interval of previously reported values (concentration 10% BSA = 5.9 ± 0.1%, 15% BSA = 9.4 ± 0.2%). PSR and T2B in thigh muscle were also in agreement with literature (PSR = 10.9 ± 0.3%, T2B = 6.4 ± 0.4 us). In 10 healthy subjects, global left ventricular PSR was 4.30 ± 0.65%. In patients, PSR was reduced in areas associated with LGE (remote: 4.68 ± 0.70% vs. fibrotic: 3.12 ± 0.78 %, n = 5, P < .002). CONCLUSION: In vivo model-based qMT mapping of the heart was performed for the first time, with promising results for non-contrast enhanced assessment of myocardial fibrosis.


Assuntos
Cardiomiopatias , Meios de Contraste , Cardiomiopatias/diagnóstico por imagem , Fibrose , Gadolínio , Humanos , Imageamento por Ressonância Magnética
8.
NMR Biomed ; 34(1): e4409, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32974984

RESUMO

PURPOSE: To develop a novel fast water-selective free-breathing 3D Cartesian cardiac CINE scan with full self-navigation and isotropic whole-heart (WH) coverage. METHODS: A free-breathing 3D Cartesian cardiac CINE scan with a water-selective balanced steady-state free precession and a continuous (non-ECG-gated) variable-density Cartesian sampling with spiral profile ordering, out-inward sampling and acquisition-adaptive alternating tiny golden and golden angle increment between spiral arms is proposed. Data is retrospectively binned based on respiratory and cardiac self-navigation signals. A translational respiratory-motion-corrected and cardiac-motion-resolved image is reconstructed with a multi-bin patch-based low-rank reconstruction (MB-PROST) within about 15 min. A respiratory-motion-resolved approach is also investigated. The proposed 3D Cartesian cardiac CINE is acquired in sagittal orientation in 1 min 50 s for 1.9 mm3 isotropic WH coverage. Left ventricular (LV) function parameters and image quality derived from a blinded reading of the proposed 3D CINE framework are compared against conventional multi-slice 2D CINE imaging in 10 healthy subjects and 10 patients with suspected cardiovascular disease. RESULTS: The proposed framework provides free-breathing 3D cardiac CINE images with 1.9 mm3 spatial and about 45 ms temporal resolution in a short acquisition time (<2 min). LV function parameters derived from 3D CINE were in good agreement with 2D CINE (10 healthy subjects and 10 patients). Bias and confidence intervals were obtained for end-systolic volume, end-diastolic volume and ejection fraction of 0.1 ± 3.5 mL, -0.6 ± 8.2 mL and -0.1 ± 2.2%, respectively. CONCLUSION: The proposed framework enables isotropic 3D Cartesian cardiac CINE under free breathing for fast assessment of cardiac anatomy and function.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Adulto , Diástole/fisiologia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Respiração , Volume Sistólico/fisiologia , Sístole/fisiologia , Função Ventricular Esquerda/fisiologia
9.
J Magn Reson Imaging ; 53(4): 1253-1265, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124081

RESUMO

BACKGROUND: Dixon cardiac magnetic resonance fingerprinting (MRF) has been recently introduced to simultaneously provide water T1 , water T2 , and fat fraction (FF) maps. PURPOSE: To assess Dixon cardiac MRF repeatability in healthy subjects and its clinical feasibility in a cohort of patients with cardiovascular disease. POPULATION: T1MES phantom, water-fat phantom, 11 healthy subjects and 19 patients with suspected cardiovascular disease. STUDY TYPE: Prospective. FIELD STRENGTH/SEQUENCE: 1.5T, inversion recovery spin echo (IRSE), multiecho spin echo (MESE), modified Look-Locker inversion recovery (MOLLI), T2 gradient spin echo (T2 -GRASE), 6-echo gradient rewound echo (GRE), and Dixon cardiac MRF. ASSESSMENT: Dixon cardiac MRF precision was assessed through repeated scans against conventional MOLLI, T2 -GRASE, and PDFF in phantom and 11 healthy subjects. Dixon cardiac MRF native T1 , T2 , FF, postcontrast T1 and synthetic extracellular volume (ECV) maps were assessed in 19 patients in comparison to conventional sequences. Measurements in patients were performed in the septum and in late gadolinium enhanced (LGE) areas and assessed using mean value distributions, correlation, and Bland-Altman plots. Image quality and diagnostic confidence were assessed by three experts using 5-point scoring scales. STATISTICAL TESTS: Paired Wilcoxon rank signed test and paired t-tests were applied. Statistical significance was indicated by *(P < 0.05). RESULTS: Dixon cardiac MRF showed good overall precision in phantom and in vivo. Septal average repeatability was ~23 msec for T1 , ~2.2 msec for T2 , and ~1% for FF. Biases in healthy subjects/patients were measured at +37 msec*/+60 msec* and -8.8 msec*/-8 msec* when compared to MOLLI and T2 -GRASE, respectively. No statistically significant differences in postcontrast T1 (P = 0.17) and synthetic ECV (P = 0.19) measurements were observed in patients. DATA CONCLUSION: Dixon cardiac MRF attained good overall precision in phantom and healthy subjects, while providing coregistered T1 , T2 , and fat fraction maps in a single breath-hold scan with similar or better image quality than conventional methods in patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.


Assuntos
Coração , Imageamento por Ressonância Magnética , Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
10.
J Cardiovasc Magn Reson ; 23(1): 62, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34024276

RESUMO

PURPOSE: To develop a free-breathing whole-heart isotropic-resolution 3D late gadolinium enhancement (LGE) sequence with Dixon-encoding, which provides co-registered 3D grey-blood phase-sensitive inversion-recovery (PSIR) and complementary 3D fat volumes in a single scan of < 7 min. METHODS: A free-breathing 3D PSIR LGE sequence with dual-echo Dixon readout with a variable density Cartesian trajectory with acceleration factor of 3 is proposed. Image navigators are acquired to correct both inversion recovery (IR)-prepared and reference volumes for 2D translational respiratory motion, enabling motion compensated PSIR reconstruction with 100% respiratory scan efficiency. An intermediate PSIR reconstruction is performed between the in-phase echoes to estimate the signal polarity which is subsequently applied to the IR-prepared water volume to generate a water grey-blood PSIR image. The IR-prepared water volume is obtained using a water/fat separation algorithm from the corresponding dual-echo readout. The complementary fat-volume is obtained after water/fat separation of the reference volume. Ten patients (6 with myocardial scar) were scanned with the proposed water/fat grey-blood 3D PSIR LGE sequence at 1.5 T and compared to breath-held grey-blood 2D LGE sequence in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), scar depiction, scar transmurality, scar mass and image quality. RESULTS: Comparable CRs (p = 0.98, 0.40 and 0.83) and CNRs (p = 0.29, 0.40 and 0.26) for blood-myocardium, scar-myocardium and scar-blood respectively were obtained with the proposed free-breathing 3D water/fat LGE and 2D clinical LGE scan. Excellent agreement for scar detection, scar transmurality, scar mass (bias = 0.29%) and image quality scores (from 1: non-diagnostic to 4: excellent) of 3.8 ± 0.42 and 3.6 ± 0.69 (p > 0.99) were obtained with the 2D and 3D PSIR LGE approaches with comparable total acquisition time (p = 0.29). Similar agreement in intra and inter-observer variability were obtained for the 2D and 3D acquisition respectively. CONCLUSION: The proposed approach enabled the acquisition of free-breathing motion-compensated isotropic-resolution 3D grey-blood PSIR LGE and fat volumes. The proposed approach showed good agreement with conventional 2D LGE in terms of CR, scar depiction and scan time, while enabling free-breathing acquisition, whole-heart coverage, reformatting in arbitrary views and visualization of both water and fat information.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Aumento da Imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
11.
J Cardiovasc Magn Reson ; 23(1): 57, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33993890

RESUMO

BACKGROUND: The widespread clinical application of coronary cardiovascular magnetic resonance (CMR) angiography (CMRA) for the assessment of coronary artery disease (CAD) remains limited due to low scan efficiency leading to prolonged and unpredictable acquisition times; low spatial-resolution; and residual respiratory motion artefacts resulting in limited image quality. To overcome these limitations, we have integrated highly undersampled acquisitions with image-based navigators and non-rigid motion correction to enable high resolution (sub-1 mm3) free-breathing, contrast-free 3D whole-heart coronary CMRA with 100% respiratory scan efficiency in a clinically feasible and predictable acquisition time. OBJECTIVES: To evaluate the diagnostic performance of this coronary CMRA framework against coronary computed tomography angiography (CTA) in patients with suspected CAD. METHODS: Consecutive patients (n = 50) with suspected CAD were examined on a 1.5T CMR scanner. We compared the diagnostic accuracy of coronary CMRA against coronary CTA for detecting a ≥ 50% reduction in luminal diameter. RESULTS: The 50 recruited patients (55 ± 9 years, 33 male) completed coronary CMRA in 10.7 ± 1.4 min. Twelve (24%) had significant CAD on coronary CTA. Coronary CMRA obtained diagnostic image quality in 95% of all, 97% of proximal, 97% of middle and 90% of distal coronary segments. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were: per patient (100%, 74%, 55%, 100% and 80%), per vessel (81%, 88%, 46%, 97% and 88%) and per segment (76%, 95%, 44%, 99% and 94%) respectively. CONCLUSIONS: The high diagnostic image quality and diagnostic performance of coronary CMRA compared against coronary CTA demonstrates the potential of coronary CMRA as a robust and safe non-invasive alternative for excluding significant disease in patients at low-intermediate risk of CAD.


Assuntos
Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Humanos , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
12.
Magn Reson Med ; 84(4): 2018-2033, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32250492

RESUMO

PURPOSE: To develop a novel acquisition and reconstruction framework for isotropic 3D Cartesian cardiac CINE within a single breath-hold for left ventricle (LV) and whole-heart coverage. METHODS: A variable-density Cartesian acquisition with spiral profile ordering, out-inward sampling, and acquisition-adaptive alternating tiny golden/golden angle increment between spiral arms is proposed to provide incoherent and nonredundant sampling within and among cardiac phases. A novel multi-bin patch-based low-rank reconstruction, named MB-PROST, is proposed to exploit redundant information on a local (within a patch), nonlocal (similar patches within a spatial neighborhood), and temporal (among all cardiac phases) scale with an implicit motion alignment among patches. The proposed multi-bin patch-based low-rank reconstruction reconstruction is compared against compressed sensing reconstruction, whereas LV function parameters derived from the proposed 3D CINE framework are compared against those estimated from conventional multislice 2D CINE imaging in 10 healthy subjects and 15 patients. RESULTS: The proposed framework provides 3D cardiac CINE images with high spatial (1.9 mm3 ) and temporal resolution (˜50 ms) in a single breath-hold of Ëœ20 s for LV and Ëœ26 s for whole-heart coverage in healthy subjects. Shorter breath-hold durations of Ëœ13 to 15 s are feasible for LV coverage with slightly anisotropic resolution (1.9 × 1.9 × 2.5 mm) in patients. LV function parameters derived from 3D CINE were in good agreement with 2D CINE, with a bias of -0.1 mL/0.1 mL, -0.9 mL/-1.0 mL, -0.1%/-0.8%; and confidence intervals of ±1.7 mL/±3.7 mL, ±1.2 mL/±2.6 mL, and ±1.2%/±3.6% (10 healthy subjects/15 patients) for end-systolic volume, end-diastolic volume, and ejection fraction, respectively. CONCLUSION: The proposed framework enables 3D isotropic cardiac CINE in a single breath-hold scan of Ëœ20 s/˜26 s for LV/whole-heart coverage, showing good agreement with clinical 2D CINE scans in terms of LV functional assessment.


Assuntos
Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Suspensão da Respiração , Humanos , Imageamento Tridimensional , Reprodutibilidade dos Testes
13.
Magn Reson Med ; 83(6): 2107-2123, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31736146

RESUMO

PURPOSE: Cardiac magnetic resonance fingerprinting (cMRF) has been recently introduced to simultaneously provide T1 , T2 , and M0 maps. Here, we develop a 3-point Dixon-cMRF approach to enable simultaneous water specific T1 , T2 , and M0 mapping of the heart and fat fraction (FF) estimation in a single breath-hold scan. METHODS: Dixon-cMRF is achieved by combining cMRF with several innovations that were previously introduced for other applications, including a 3-echo GRE acquisition with golden angle radial readout and a high-dimensional low-rank tensor constrained reconstruction to recover the highly undersampled time series images for each echo. Water-fat separation of the Dixon-cMRF time series is performed to allow for water- and fat-specific T1 , T2 , and M0 estimation, whereas FF estimation is extracted from the M0 maps. Dixon-cMRF was evaluated in a standardized T1 -T2 phantom, in a water-fat phantom, and in healthy subjects in comparison to current clinical standards: MOLLI, SASHA, T2 -GRASE, and 6-point Dixon proton density FF (PDFF) mapping. RESULTS: Dixon-cMRF water T1 and T2 maps showed good agreement with reference T1 and T2 mapping techniques (R2 > 0.99 and maximum normalized RMSE ~5%) in a standardized phantom. Good agreement was also observed between Dixon-cMRF FF and reference PDFF (R2 > 0.99) and between Dixon-cMRF water T1 and T2 and water selective T1 and T2 maps (R2 > 0.99) in a water-fat phantom. In vivo Dixon-cMRF water T1 values were in good agreement with MOLLI and water T2 values were slightly underestimated when compared to T2 -GRASE. Average myocardium septal T1 values were 1129 ± 38 ms, 1026 ± 28 ms, and 1045 ± 32 ms for SASHA, MOLLI, and the proposed water Dixon-cMRF. Average T2 values were 51.7 ± 2.2 ms and 42.8 ± 2.6 ms for T2 -GRASE and water Dixon-cMRF, respectively. Dixon-cMRF FF maps showed good agreement with in vivo PDFF measurements (R2 > 0.98) and average FF in the septum was measured at 1.3%. CONCLUSION: The proposed Dixon-cMRF allows to simultaneously quantify myocardial water T1 , water T2 , and FF in a single breath-hold scan, enabling multi-parametric T1 , T2 , and fat characterization. Moreover, reduced T1 and T2 quantification bias caused by water-fat partial volume was demonstrated in phantom experiments.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
Arterioscler Thromb Vasc Biol ; 39(4): 569-582, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760017

RESUMO

Atherosclerosis is the leading cause of cardiovascular morbidity and mortality. Over the past 2 decades, increasing research attention is converging on the early detection and monitoring of atherosclerotic plaque. Among several invasive and noninvasive imaging modalities, magnetic resonance imaging (MRI) is emerging as a promising option. Advantages include its versatility, excellent soft tissue contrast for plaque characterization and lack of ionizing radiation. In this review, we will explore the recent advances in multicontrast and multiparametric imaging sequences that are bringing the aspiration of simultaneous arterial lumen, vessel wall, and plaque characterization closer to clinical feasibility. We also discuss the latest advances in molecular magnetic resonance and multimodal atherosclerosis imaging.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/diagnóstico por imagem , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Placa Aterosclerótica/diagnóstico por imagem , Doenças das Artérias Carótidas/economia , Meios de Contraste , Doença da Artéria Coronariana/economia , Previsões , Gadolínio , Humanos , Nanopartículas Metálicas , Imagem Multimodal , Placa Aterosclerótica/química , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
15.
J Cardiovasc Magn Reson ; 22(1): 88, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317570

RESUMO

BACKGROUND: The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min. METHODS: In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1-4, non-diagnostic-fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores. RESULTS: The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5). CONCLUSIONS: The proposed framework provides high-resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.


Assuntos
Vasos Coronários/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Miocárdio/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Feminino , Fibrose , Cardiopatias/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fluxo de Trabalho , Adulto Jovem
16.
J Cardiovasc Magn Reson ; 22(1): 12, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014001

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) T1ρ mapping can be used to detect ischemic or non-ischemic cardiomyopathy without the need of exogenous contrast agents. Current 2D myocardial T1ρ mapping requires multiple breath-holds and provides limited coverage. Respiratory gating by diaphragmatic navigation has recently been exploited to enable free-breathing 3D T1ρ mapping, which, however, has low acquisition efficiency and may result in unpredictable and long scan times. This study aims to develop a fast respiratory motion-compensated 3D whole-heart myocardial T1ρ mapping technique with high spatial resolution and predictable scan time. METHODS: The proposed electrocardiogram (ECG)-triggered T1ρ mapping sequence is performed under free-breathing using an undersampled variable-density 3D Cartesian sampling with spiral-like order. Preparation pulses with different T1ρ spin-lock times are employed to acquire multiple T1ρ-weighted images. A saturation prepulse is played at the start of each heartbeat to reset the magnetization before T1ρ preparation. Image navigators are employed to enable beat-to-beat 2D translational respiratory motion correction of the heart for each T1ρ-weighted dataset, after which, 3D translational registration is performed to align all T1ρ-weighted volumes. Undersampled reconstruction is performed using a multi-contrast 3D patch-based low-rank algorithm. The accuracy of the proposed technique was tested in phantoms and in vivo in 11 healthy subjects in comparison with 2D T1ρ mapping. The feasibility of the proposed technique was further investigated in 3 patients with suspected cardiovascular disease. Breath-hold late-gadolinium enhanced (LGE) images were acquired in patients as reference for scar detection. RESULTS: Phantoms results revealed that the proposed technique provided accurate T1ρ values over a wide range of simulated heart rates in comparison to a 2D T1ρ mapping reference. Homogeneous 3D T1ρ maps were obtained for healthy subjects, with septal T1ρ of 58.0 ± 4.1 ms which was comparable to 2D breath-hold measurements (57.6 ± 4.7 ms, P = 0.83). Myocardial scar was detected in 1 of the 3 patients, and increased T1ρ values (87.4 ± 5.7 ms) were observed in the infarcted region. CONCLUSIONS: An accelerated free-breathing 3D whole-heart T1ρ mapping technique was developed with high respiratory scan efficiency and near-isotropic spatial resolution (1.7 × 1.7 × 2 mm3) in a clinically feasible scan time of ~ 6 mins. Preliminary patient results suggest that the proposed technique may find applications in non-contrast myocardial tissue characterization.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Eletrocardiografia , Frequência Cardíaca , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia , Respiração , Adulto , Algoritmos , Técnicas de Imagem de Sincronização Cardíaca/instrumentação , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Imagens de Fantasmas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
17.
J Cardiovasc Magn Reson ; 22(1): 24, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299445

RESUMO

BACKGROUND: To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework. METHODS: Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4-5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed. RESULTS: Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects. CONCLUSIONS: We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.


Assuntos
Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Adulto , Estudos de Casos e Controles , Angiografia por Tomografia Computadorizada , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
18.
J Cardiovasc Magn Reson ; 22(1): 53, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32684167

RESUMO

BACKGROUND: Conventional 2D inversion recovery (IR) and phase sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) have been widely incorporated into routine CMR for the assessment of myocardial viability. However, reliable suppression of fat signal, and increased isotropic spatial resolution and volumetric coverage within a clinically feasible scan time remain a challenge. In order to address these challenges, this work proposes a highly efficient respiratory motion-corrected 3D whole-heart water/fat LGE imaging framework. METHODS: An accelerated IR-prepared 3D dual-echo acquisition and motion-corrected reconstruction framework for whole-heart water/fat LGE imaging was developed. The acquisition sequence includes 2D image navigators (iNAV), which are used to track the respiratory motion of the heart and enable 100% scan efficiency. Non-rigid motion information estimated from the 2D iNAVs and from the data itself is integrated into a high-dimensional patch-based undersampled reconstruction technique (HD-PROST), to produce high-resolution water/fat 3D LGE images. A cohort of 20 patients with known or suspected cardiovascular disease was scanned with the proposed 3D water/fat LGE approach. 3D water LGE images were compared to conventional breath-held 2D LGE images (2-chamber, 4-chamber and stack of short-axis views) in terms of image quality (1: full diagnostic to 4: non-diagnostic) and presence of LGE findings. RESULTS: Image quality was considered diagnostic in 18/20 datasets for both 2D and 3D LGE magnitude images, with comparable image quality scores (2D: 2.05 ± 0.72, 3D: 1.88 ± 0.90, p-value = 0.62) and overall agreement in LGE findings. Acquisition time for isotropic high-resolution (1.3mm3) water/fat LGE images was 8.0 ± 1.4 min (3-fold acceleration, 60-88 slices covering the whole heart), while 2D LGE images were acquired in 5.6 ± 2.2 min (12-18 slices, including pauses between breath-holds) albeit with a lower spatial resolution (1.40-1.75 mm in-plane × 8 mm slice thickness). CONCLUSION: A novel framework for motion-corrected whole-heart 3D water/fat LGE imaging has been introduced. The method was validated in patients with known or suspected cardiovascular disease, showing good agreement with conventional breath-held 2D LGE imaging, but offering higher spatial resolution, improved volumetric coverage and good image quality from a free-breathing acquisition with 100% scan efficiency and predictable scan time.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade , Água Corporal/química , Doenças Cardiovasculares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Coração/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Tecido Adiposo/fisiopatologia , Adulto , Idoso , Suspensão da Respiração , Técnicas de Imagem de Sincronização Cardíaca , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
19.
Histopathology ; 69(6): 943-949, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27380440

RESUMO

AIMS: Orientation and digital analysis of the biliary remnants in the resected porta hepatis in infants with biliary atresia. METHODS AND RESULTS: Samples were orientated intra-operatively then stained with haematoxylin and eosin and immunostained for cytokeratin 7 (CK7). Sections were then digitized and analysed. Most proximal transected surface area was defined as the porta hepatis area (PHA) and the biliary epithelial area was defined as 'BEA'. Data are quoted as median (range). Non-parametric statistical comparisons were made as appropriate. P < 0.05 was regarded as significant. Thirty-eight infants underwent surgery [median age 53 (16-120) days]. Eight specimens were excluded from the study due to technical reasons, leaving 30 specimens as the study cohort. Median PHA was 70 (30-133) mm2 , median BEA 0.57 (0.07-5.5) mm2 (r = 0.51; P < 0.002). The median BEA/PHA ratio was 9.6 × 10-3 (1.9-104 × 10-3 ). There was a marked correlation of PHA with plasma γ-glutamyl transpeptidase (r = -0.51; P = 0.001). Both total BEA and the BEA/PHA ratio correlated with alkaline phosphatase (r = -0.35; P = 0.03 and r = -0.47; P = 0.005, respectively). Age at surgery correlated inversely with BEA (r = -0.44; P = 0.01) but not PHA (P = 0.1). CONCLUSIONS: Precise quantification of biliary remnants is possible and correlates with biochemical variables. Values for BEA were associated with and declined demonstrably with increasing age at surgery.


Assuntos
Atresia Biliar/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Microdissecção e Captura a Laser , Masculino
20.
J Am Soc Nephrol ; 24(11): 1863-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929770

RESUMO

Despite renin-angiotensin-aldosterone system blockade, which retards progression of CKD by reducing proteinuria, many patients with CKD have residual proteinuria, an independent risk factor for disease progression. We aimed to address whether active vitamin D analogs reduce residual proteinuria. We systematically searched for trials published between 1950 and September of 2012 in the Medline, Embase, and Cochrane Library databases. All randomized controlled trials of vitamin D analogs in patients with CKD that reported an effect on proteinuria with sample size≥50 were selected. Mean differences of proteinuria change over time and odds ratios for reaching ≥15% proteinuria decrease from baseline to last measurement were synthesized under a random effects model. From 907 citations retrieved, six studies (four studies with paricalcitol and two studies with calcitriol) providing data for 688 patients were included in the meta-analysis. Most patients (84%) used an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker throughout the study. Active vitamin D analogs reduced proteinuria (weighted mean difference from baseline to last measurement was -16% [95% CI, -13% to -18%]) compared with controls (+6% [95% CI, 0% to +12%]; P<0.001). Proteinuria reduction was achieved more commonly in patients treated with an active vitamin D analog (204/390 patients) than control patients (86/298 patients; OR, 2.72 [95% CI, 1.82 to 4.07]; P<0.001). Thus, active vitamin D analogs may further reduce proteinuria in CKD patients in addition to current regimens. Future studies should address whether vitamin D therapy also retards progressive renal functional decline.


Assuntos
Proteinúria/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Vitamina D/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica/fisiopatologia , Vitamina D/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA