Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998147

RESUMO

An accurate and simple screening method has been developed for the determination of fluoroquinolone antibiotics. Carbon dots were synthesized by simple hydrothermal treatment as highly fluorescent nano-sensors. They were subsequently used in the synthesis of organic-based molecularly imprinted polymers to develop fluorescence-based polymeric composites using enoxacin as a representative dummy template molecule of fluoroquinolones. The method was optimized concerning the pH of the medium and composite concentration. The normalized fluorescence intensity showed efficient quenching under optimized conditions upon successive addition of the template, with an excellent correlation coefficient. The proposed method was applied to eight other fluoroquinolones, exhibiting, in all cases, good correlation coefficients (0.65-0.992) within the same linearity range (0.03-2.60 mg mL-1). Excellent detection and quantification limits were been obtained for the target analytes down to 0.062 and 0.186 mg L-1, respectively. All studied analytes showed no interference with enrofloxacin, the most commonly used veterinary fluoroquinolone, with a percentage of cross-reactivity varying from 89.00 to 540.00%. This method was applied successfully for the determination of enrofloxacin in three different types of meat samples: beef, pork, and chicken, with good recoveries varying from 70 to 100% at three levels. This new procedure is an easy analytical method that can be useful as a screening method for monitoring the environmental hazard of fluoroquinolones in quality control laboratories.


Assuntos
Fluoroquinolonas , Impressão Molecular , Animais , Bovinos , Enrofloxacina , Carbono , Impressão Molecular/métodos , Carne
2.
Artigo em Inglês | MEDLINE | ID: mdl-33545562

RESUMO

The persistent introduction of new ß-blockers motivates the demand for optimizing RP-HPLC well-designed analytical procedures that could be applied to this structurally related and commonly prescribed pharmacological group in order to reduce time and chemicals consumption in quality control units. Betoxolol HCl (BEX) and Carvidolol (CAR) were selected as representative examples to conduct predictive studies based on two complementary approaches, Quality by design (QBD) and Quantitative structure property relationship (QSPR). In concern QBD, a Box-Behnken design was adopted at variable chromatographic parameters to achieve the most proper conditions that might be applied for efficient analysis of the majority of group members. On the other hand, the retention time was chosen as the target property in the QSPR study that was conducted onto seven ß. blockers (the two investigated drugs in addition to five other ß. blockers) to find the best correlated molecular descriptors to the retention behavior. Both external and internal validation studies have comparable quality with training levels. Hence a simple selection algorithm of conventional features provides robust confirmatory predictive QBD and QSPR models. Derringer's desirability function as as a multi-criteria approach was applied for getting the optimum chromatographic analysis conditions. Efficient analysis of BET and CAR was achieved at column temperatures of 26.00 and 27.50 °C, respectively using acetonitrile and phosphate buffer (pH 4.55) 70:30 v/v as a mobile phase with a flow rate of 1.00 mL/min, and UV detection at 220 nm. The method was validated in accordance to ICH guidelines, and had exhibited acceptable precision, accuracy, linearity, and robustness.


Assuntos
Antagonistas Adrenérgicos beta/análise , Antagonistas Adrenérgicos beta/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Acetonitrilas , Limite de Detecção , Modelos Lineares , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA