Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 256: 109740, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989972

RESUMO

Among hazardous pollutants, 2,4-Dinitrophenol (2,4-DNP) is considered highly toxic and possesses a remarkable resistance to degradation. Therefore, investigation of the possible mechanisms for removal of such pollutants is important. Laccase enzyme can decompose phenolics despite the fact that its application has been limited due to lack of possibility to reuse it. Immobilization can overcome this problem. In this paper, laccase complexes with montmorillonite K10 and zeolite were used to decompose 2,4-DNP with concentrations of 1.5 mg l-1 and 50 mg kg-1 in synthetic wastewater and soil, respectively. The maximum removal of pollutant from wastewater in samples containing laccase-zeolite and laccase-montmorillonite complexes were 99 and 93.3%, respectively, which occurred at 4 h incubation compared with 6 h for free laccase. The maximum removal of pollutant from soil was observed for all treatments after 16 h of incubation. The maximum removal for samples containing free laccase, laccase-zeolite, and laccase-montmorillonite complexes were 98.5%, 98.6%, and 90.4%, respectively. Control sample also showed maximum removal of 35.8%. In general, application of laccase-zeolite complexes in aqueous environment, and these complexes and free laccases in soil was found very effective in degradation of 2,4-DNP. Hence, the use of laccase, especially immobilized laccases, for removal of 2,4-DNP from environment is promising.


Assuntos
Lacase , Purificação da Água , 2,4-Dinitrofenol , Enzimas Imobilizadas , Solo , Águas Residuárias
2.
Int J Phytoremediation ; 20(7): 643-649, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29039991

RESUMO

It was found that using chelating agents increases the efficiency of heavy metal extraction, however, they may have negative effects on soil ecosystem quality. A pot experiment was conducted in a completely randomized design with three replications in order to evaluate the effect of EDTA and Olive Husk Extract (OHE) on some chemical and biological properties of the Pb-contaminated soil. The experimental treatments included EDTA (2 g Na2EDTA salt per kg soil), OHE (2 g TDS of OHE per kg soil) and control (without the chelating agent). The results revealed that the EDTA and OHE treatments increased the Pb availability by 17.7% and 5.5% in comparison to the control treatment, respectively. Although EDTA was more effective in increasing the Pb availability but decreased the soil biological quality index (SBQI). The EDTA treatment significantly decreased the dehydrogenase (DH) activity and germination index (GI). The OHE application significantly increased the available-P, available-K, total N and organic carbon content by 339.92%, 40.79%, 20.9%, and 29.7% compared with control treatment, respectively. Furthermore, OHE considerably increased SBQI from 18.96 to 53.48. Compared to the control treatment higher values of soil respiration activity, DH activity, and carbon availability index (CAI) were observed in OHE treatment.


Assuntos
Olea , Poluentes do Solo/análise , Biodegradação Ambiental , Quelantes/química , Ecossistema , Ácido Edético/química , Chumbo , Solo
3.
Water Environ Res ; 89(6): 519-526, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545603

RESUMO

The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.


Assuntos
Cádmio/química , Compostos Férricos/química , Shewanella putrefaciens/metabolismo , Adsorção , Silicatos de Alumínio/química , Biodegradação Ambiental , Argila , Minerais/química , Oxigênio , Difração de Raios X
4.
Environ Geochem Health ; 37(6): 997-1005, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971375

RESUMO

Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.


Assuntos
Silicatos de Alumínio/química , Arsênio/metabolismo , Shewanella putrefaciens/metabolismo , Adsorção , Arsênio/química , Bentonita/química , Argila , Compostos Férricos/química , Caulim/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA