Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biol Conserv ; 251: 108798, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33071292

RESUMO

The European Union is one of the most important markets for the trafficking of endangered species and a major transit point for illegal wildlife trade. The latter is not only one of the most important anthropogenic drivers of biodiversity loss, it also represents a growing risk for public health. Indeed, wildlife trade exposes humans to a plethora of severe emerging infectious diseases, some of which have contributed to the most dramatic global pandemics humankind has endured. Illegal wildlife trade is often considered as a problem of developing countries but it is first and foremost an international global business with a trade flow from developing to developed countries. The devastating effects of the ongoing SARS-CoV-2 outbreak should thus be an unassailable argument for European decision makers to change paradigm. Rather than deploying efforts and money to combat novel pathogens, mitigating the risk of spreading emerging infectious diseases should be addressed and be part of any sustainable socioeconomic development plan. Stricter control procedures at borders and policies should be enforced. Additionally, strengthening research in wildlife forensic science and developing a network of forensic laboratories should be the cornerstone of the European Union plan to tackle the illegal wildlife trade. Such proactive approach, that should further figure in the EU-Wildlife Action Plan, could produce a win-win situation: the curb of illegal wildlife trade would subsequently diminish the likelihood of importing new zoonotic diseases in the European Union.

3.
Am J Primatol ; 79(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28671714

RESUMO

Elevated Lipoprotein(a) (Lp(a)) plasma concentrations are a risk factor for cardiovascular disease in humans, largely controlled by the LPA gene encoding apolipoprotein(a) (apo(a)). Lp(a) is composed of low-density lipoprotein (LDL) and apo(a) and restricted to Catarrhini. A variable number of kringle IV (KIV) domains in LPA lead to a size polymorphism of apo(a) that is inversely correlated with Lp(a) concentrations. Smaller apo(a) isoforms and higher Lp(a) levels in central chimpanzees (Pan troglodytes troglodytes [PTT]) compared to humans from Europe had been reported. We studied apo(a) isoforms and Lp(a) concentrations in 75 western (Pan troglodytes verus [PTV]) and 112 central chimpanzees, and 12 bonobos (Pan paniscus [PPA]), all wild born and living in sanctuaries in Sierra Leone, Republic of the Congo, and DR Congo, respectively, and 116 humans from Gabon. Lp(a) levels were severalfold higher in western than in central chimpanzees (181.0 ± 6.7 mg/dl vs. 56.5 ± 4.3 mg/dl), whereas bonobos showed intermediate levels (134.8 ± 33.4 mg/dl). Apo(a) isoform sizes differed significantly between subspecies (means 20.9 ± 2.2, 22.9 ± 4.4, and 23.8 ± 3.8 KIV repeats in PTV, PTT, and PPA, respectively). However, far higher isoform-associated Lp(a) concentrations for all isoform sizes in western chimpanzees offered the main explanation for the higher overall Lp(a) levels in this subspecies. Human Lp(a) concentrations (mean 47.9 ± 2.8 mg/dl) were similar to those in central chimpanzees despite larger isoforms (mean 27.1 ± 4.9 KIV). Lp(a) and LDL, apoB-100, and total cholesterol levels only correlated in PTV. This remarkable differentiation between chimpanzees from different African habitats and the trait's similarity in humans and chimpanzees from Central Africa poses the question of a possible impact of an environmental factor that has shaped the genetic architecture of LPA. Overall, studies on the cholesterol-containing particles of Lp(a) and LDL in chimpanzees should consider differentiation between subspecies.


Assuntos
Apoproteína(a)/genética , Lipoproteína(a)/genética , Pan troglodytes/genética , África Central , Animais , Congo , Gabão , Humanos , Serra Leoa
4.
Mol Biol Evol ; 32(5): 1186-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25605789

RESUMO

Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.


Assuntos
Autoantígenos/genética , Evolução Molecular , Variação Genética , Colágenos não Fibrilares/genética , Seleção Genética , Animais , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pan paniscus , Pan troglodytes , Polimorfismo de Nucleotídeo Único , Colágeno Tipo XVII
6.
PLoS Genet ; 8(9): e1002962, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028369

RESUMO

Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.


Assuntos
Animais Domésticos , Animais Selvagens , Encéfalo/metabolismo , Expressão Gênica , Antígeno AC133 , Animais , Animais Domésticos/genética , Animais Domésticos/metabolismo , Animais Selvagens/genética , Animais Selvagens/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Comportamento Animal , Cães , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cobaias , Peptídeos/genética , Peptídeos/metabolismo , Coelhos , Ratos , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Sus scrofa , Lobos
7.
Mol Biol Evol ; 30(4): 964-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23329688

RESUMO

The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.


Assuntos
Hominidae/genética , Metagenômica , Proteínas de Plasma Seminal/genética , Animais , Evolução Molecular , Éxons , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Polimorfismo Genético , Sêmen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Análise de Sequência de DNA
8.
BMC Microbiol ; 13: 204, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24025115

RESUMO

BACKGROUND: It is increasingly recognized that the bacteria that live in and on the human body (the microbiome) can play an important role in health and disease. The composition of the microbiome is potentially influenced by both internal factors (such as phylogeny and host physiology) and external factors (such as diet and local environment), and interspecific comparisons can aid in understanding the importance of these factors. RESULTS: To gain insights into the relative importance of these factors on saliva microbiome diversity, we here analyze the saliva microbiomes of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) from two sanctuaries in Africa, and from human workers at each sanctuary. The saliva microbiomes of the two Pan species are more similar to one another, and the saliva microbiomes of the two human groups are more similar to one another, than are the saliva microbiomes of human workers and apes from the same sanctuary. We also looked for the existence of a core microbiome and find no evidence for a taxon-based core saliva microbiome for Homo or Pan. In addition, we studied the saliva microbiome from apes from the Leipzig Zoo, and found an extraordinary diversity in the zoo ape saliva microbiomes that is not found in the saliva microbiomes of the sanctuary animals. CONCLUSIONS: The greater similarity of the saliva microbiomes of the two Pan species to one another, and of the two human groups to one another, are in accordance with both the phylogenetic relationships of the hosts as well as with host physiology. Moreover, the results from the zoo animals suggest that novel environments can have a large impact on the microbiome, and that microbiome analyses based on captive animals should be viewed with caution as they may not reflect the microbiome of animals in the wild.


Assuntos
Microbiota , Pan paniscus/microbiologia , Pan troglodytes/microbiologia , Saliva/microbiologia , Adulto , África , Animais , Alemanha , Humanos , Adulto Jovem
9.
PLoS Pathog ; 6(2): e1000765, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20169187

RESUMO

The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.


Assuntos
Malária Falciparum/parasitologia , Malária Falciparum/veterinária , Pan paniscus/parasitologia , Pan troglodytes/parasitologia , Plasmodium falciparum/genética , Animais , Genes de Protozoários , Humanos , Filogenia , Reação em Cadeia da Polimerase
10.
J Parasitol ; 106(2): 221-232, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32164028

RESUMO

Members of the sucking louse genus Pedicinus are ectoparasites of cercopithecid primates in Africa, Asia, and Gibraltar. Pedicinus gabonensis n. sp. is described on the basis of adult male and female specimens collected from the mandrill (Mandrillus sphinx) in Gabon. The new species is compared morphologically with other members of the genus Pedicinus, and a nuclear elongation factor 1 alpha gene sequence is provided. Host associations and geographical distributions of the 18 previously recognized species of the genus and of P. gabonensis n. sp. are reviewed. Updated identification keys are provided for males and females of all known valid species of Pedicinus.


Assuntos
Anoplura/classificação , Infestações por Piolhos/veterinária , Mandrillus/parasitologia , Doenças dos Macacos/parasitologia , Animais , Anoplura/anatomia & histologia , Anoplura/genética , Anoplura/fisiologia , DNA/química , DNA/isolamento & purificação , Feminino , Gabão/epidemiologia , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Masculino , Doenças dos Macacos/epidemiologia , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária
11.
J Hum Evol ; 56(4): 361-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19285708

RESUMO

The ratio of the second-to-fourth finger lengths (2D:4D) has been proposed as an indicator of prenatal sex differentiation. However, 2D:4D has not been studied in the closest living human relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). We report the results from 79 chimpanzees and 39 bonobos of both sexes, including infants, juveniles, and adults. We observed the expected sex difference in 2D:4D, and substantially higher, more human-like, 2D:4D in bonobos than chimpanzees. Previous research indicates that sex differences in 2D:4D result from differences in prenatal sex hormone levels. We hypothesize that the species difference in 2D:4D between bonobos and chimpanzees suggests a possible role for early exposure to sex hormones in the development of behavioral differences between the two species.


Assuntos
Dedos/anatomia & histologia , Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Caracteres Sexuais , Androgênios/metabolismo , Animais , Feminino , Masculino , Pan paniscus/metabolismo , Pan troglodytes/metabolismo
12.
J Med Primatol ; 38(3): 171-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19236561

RESUMO

BACKGROUND: This case report describes the first placental retention in an 11-year-old female bonobo (Pan paniscus) following the delivery of a healthy infant. METHODS: After unsuccessful medical treatment with oxytocin, the placenta was manually extracted. RESULTS AND CONCLUSIONS: Both the dam and infant survived.


Assuntos
Animais de Zoológico , Doenças dos Símios Antropoides/tratamento farmacológico , Doenças dos Símios Antropoides/cirurgia , Ocitocina/uso terapêutico , Pan paniscus , Placenta Retida/veterinária , Amoxicilina/uso terapêutico , Animais , Doenças dos Símios Antropoides/patologia , Feminino , Metronidazol/uso terapêutico , Placenta Retida/tratamento farmacológico , Placenta Retida/patologia , Placenta Retida/cirurgia , Gravidez , Probióticos/uso terapêutico , Resultado do Tratamento
14.
PLoS One ; 10(8): e0134548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26247603

RESUMO

Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.


Assuntos
Biomarcadores/sangue , Hominidae/metabolismo , Adolescente , Adulto , Animais , Apolipoproteína A-I/metabolismo , Bilirrubina/sangue , Colinesterases/sangue , Regulação para Baixo , Feminino , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Hominidae/sangue , Humanos , L-Lactato Desidrogenase/sangue , Fígado/metabolismo , Macaca mulatta/sangue , Macaca mulatta/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Especificidade da Espécie , Adulto Jovem
15.
PLoS One ; 6(6): e21605, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747915

RESUMO

To gain insight into the patterns of genetic variation and evolutionary relationships within and between bonobos and chimpanzees, we sequenced 150,000 base pairs of nuclear DNA divided among 15 autosomal regions as well as the complete mitochondrial genomes from 20 bonobos and 58 chimpanzees. Except for western chimpanzees, we found poor genetic separation of chimpanzees based on sample locality. In contrast, bonobos consistently cluster together but fall as a group within the variation of chimpanzees for many of the regions. Thus, while chimpanzees retain genomic variation that predates bonobo-chimpanzee speciation, extensive lineage sorting has occurred within bonobos such that much of their genome traces its ancestry back to a single common ancestor that postdates their origin as a group separate from chimpanzees.


Assuntos
Variação Genética , Genoma/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Animais , DNA Mitocondrial/genética , Evolução Molecular , Humanos , Masculino , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA