Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396248

RESUMO

OBJECTIVES: To compare the location of AI markings on screening mammograms with cancer location on diagnostic mammograms, and to classify interval cancers with high AI score as false negative, minimal sign, or true negative. METHODS: In a retrospective study from 2022, we compared the performance of an AI system with independent double reading according to cancer detection. We found 93% (880/949) of the screen-detected cancers, and 40% (122/305) of the interval cancers to have the highest AI risk score (AI score of 10). In this study, four breast radiologists reviewed mammograms from 126 randomly selected screen-detected cancers and all 120 interval cancers with an AI score of 10. The location of the AI marking was stated as correct/not correct in craniocaudal and mediolateral oblique view. Interval cancers with an AI score of 10 were classified as false negative, minimal sign significant/non-specific, or true negative. RESULTS: All screen-detected cancers and 78% (93/120) of the interval cancers with an AI score of 10 were correctly located by the AI system. The AI markings matched in both views for 79% (100/126) of the screen-detected cancers and 22% (26/120) of the interval cancers. For interval cancers with an AI score of 10, 11% (13/120) were correctly located and classified as false negative, 10% (12/120) as minimal sign significant, 26% (31/120) as minimal sign non-specific, and 31% (37/120) as true negative. CONCLUSION: AI markings corresponded to cancer location for all screen-detected cancers and 78% of the interval cancers with high AI score, indicating a potential for reducing the number of interval cancers. However, it is uncertain whether interval cancers with subtle findings in only one view are actionable for recall in a true screening setting. CLINICAL RELEVANCE STATEMENT: In this study, AI markings corresponded to the location of the cancer in a high percentage of cases, indicating that the AI system accurately identifies the cancer location in mammograms with a high AI score. KEY POINTS: • All screen-detected and 78% of the interval cancers with high AI risk score (AI score of 10) had AI markings in one or two views corresponding to the location of the cancer on diagnostic images. • Among all 120 interval cancers with an AI score of 10, 21% (25/120) were classified as a false negative or minimal sign significant and had AI markings matching the cancer location, suggesting they may be visible on prior screening. • Most of the correctly located interval cancers matched only in one view, and the majority were classified as either true negative or minimal sign non-specific, indicating low potential for being detected earlier in a real screening setting.

2.
Eur Radiol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528136

RESUMO

OBJECTIVE: To explore the ability of artificial intelligence (AI) to classify breast cancer by mammographic density in an organized screening program. MATERIALS AND METHOD: We included information about 99,489 examinations from 74,941 women who participated in BreastScreen Norway, 2013-2019. All examinations were analyzed with an AI system that assigned a malignancy risk score (AI score) from 1 (lowest) to 10 (highest) for each examination. Mammographic density was classified into Volpara density grade (VDG), VDG1-4; VDG1 indicated fatty and VDG4 extremely dense breasts. Screen-detected and interval cancers with an AI score of 1-10 were stratified by VDG. RESULTS: We found 10,406 (10.5% of the total) examinations to have an AI risk score of 10, of which 6.7% (704/10,406) was breast cancer. The cancers represented 89.7% (617/688) of the screen-detected and 44.6% (87/195) of the interval cancers. 20.3% (20,178/99,489) of the examinations were classified as VDG1 and 6.1% (6047/99,489) as VDG4. For screen-detected cancers, 84.0% (68/81, 95% CI, 74.1-91.2) had an AI score of 10 for VDG1, 88.9% (328/369, 95% CI, 85.2-91.9) for VDG2, 92.5% (185/200, 95% CI, 87.9-95.7) for VDG3, and 94.7% (36/38, 95% CI, 82.3-99.4) for VDG4. For interval cancers, the percentages with an AI score of 10 were 33.3% (3/9, 95% CI, 7.5-70.1) for VDG1 and 48.0% (12/25, 95% CI, 27.8-68.7) for VDG4. CONCLUSION: The tested AI system performed well according to cancer detection across all density categories, especially for extremely dense breasts. The highest proportion of screen-detected cancers with an AI score of 10 was observed for women classified as VDG4. CLINICAL RELEVANCE STATEMENT: Our study demonstrates that AI can correctly classify the majority of screen-detected and about half of the interval breast cancers, regardless of breast density. KEY POINTS: • Mammographic density is important to consider in the evaluation of artificial intelligence in mammographic screening. • Given a threshold representing about 10% of those with the highest malignancy risk score by an AI system, we found an increasing percentage of cancers with increasing mammographic density. • Artificial intelligence risk score and mammographic density combined may help triage examinations to reduce workload for radiologists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA