Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10706-10716, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38850513

RESUMO

Most previous measurements of oxidized mercury were collected using a method now known to be biased low. In this study, a dual-channel system with an oxidized mercury detection limit of 6-12 pg m-3 was deployed alongside a permeation tube-based automated calibrator at a mountain top site in Steamboat Springs Colorado, USA, in 2021 and 2022. Permeation tubes containing elemental mercury and mercury halides were characterized via an International System of Units (SI)-traceable gravimetric method and gas chromatography/mass spectrometry before deployment in the calibrator. The dual-channel system recovered 97 ± 4 and 100 ± 8% (±standard deviation) of injected elemental mercury and HgBr2, respectively. Total Hg permeation rates and Hg speciation from the gravimetric method, the chromatography system, the dual-channel system, and an independent SI-traceable measurement method performed at the Jozef Stefan Institute laboratory were all comparable within the respective uncertainties of each method. These are the first measurements of oxidized mercury at low environmental concentrations that have been verified against an SI-traceable calibration system in field conditions while sampling ambient air, and they show that accurate, routinely calibrated oxidized mercury measurements are achievable.


Assuntos
Monitoramento Ambiental , Mercúrio , Oxirredução , Mercúrio/análise , Calibragem , Monitoramento Ambiental/métodos , Atmosfera/química , Poluentes Atmosféricos/análise , Colorado , Cromatografia Gasosa-Espectrometria de Massas
2.
Environ Sci Technol ; 46(11): 5696-703, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22545866

RESUMO

Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the ß-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Besouros/fisiologia , Pinus/parasitologia , Casca de Planta/parasitologia , Doenças das Plantas/parasitologia , Compostos Orgânicos Voláteis/análise , Adsorção , Animais , Colorado , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/análise
3.
Sci Rep ; 12(1): 12400, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859160

RESUMO

By producing a first-of-its-kind, decadal-scale wildfire plume rise climatology in the Western U.S. and Canada, we identify trends toward enhanced plume top heights, aerosol loading aloft, and near-surface smoke injection throughout the American West. Positive and significant plume trends suggest a growing impact of Western US wildfires on air quality at the local to continental scales and support the notion that wildfires may have an increasing impact on regional climate. Overlap of identified trends with regions of increasing wildfire emissions and burn severity suggests a link to climate driven trends toward enhanced wildfire activity. Further, time series of plume activity point to a possible acceleration of trends over recent years, such that the future impacts to air quality and regional climate may exceed those suggested by a linear fit to the multi-decadal data. These findings have significant implications for human health and exacerbate concern for the climate-wildfire connection.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Aceleração , Aerossóis , Clima , Humanos , Meteorologia , Fumaça
4.
Bull Am Meteorol Soc ; 0: 1-94, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34446943

RESUMO

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA