Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 46(3): 656-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621778

RESUMO

Experimental autoimmune myocarditis (EAM) is a CD4(+) T-cell-mediated model of human inflammatory dilated cardiomyopathies. Heart-specific CD4(+) T-cell activation is dependent on autoantigens presented by MHC class II (MHCII) molecules expressed on professional APCs. In this study, we addressed the role of inflammation-induced MHCII expression by cardiac nonhematopoietic cells on EAM development. EAM was induced in susceptible mice lacking inducible expression of MHCII molecules on all nonhematopoietic cells (pIV-/- K14 class II transactivator (CIITA) transgenic (Tg) mice) by immunization with α-myosin heavy chain peptide in CFA. Lack of inducible nonhematopoietic MHCII expression in pIV-/- K14 CIITA Tg mice conferred EAM resistance. In contrast, cardiac pathology was induced in WT and heterozygous mice, and correlated with elevated cardiac endothelial MHCII expression. Control mice with myocarditis displayed an increase in infiltrating CD4(+) T cells and in expression of IFN-γ, which is the major driver of nonhematopoietic MHCII expression. Mechanistically, IFN-γ neutralization in WT mice shortly before disease onset resulted in reduced cardiac MHCII expression and pathology. These findings reveal a previously overlooked contribution of IFN-γ to induce endothelial MHCII expression in the heart and to progress cardiac pathology during myocarditis.


Assuntos
Doenças Autoimunes/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Miocardite/imunologia , Animais , Autoantígenos , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Endotélio/imunologia , Inflamação , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miocárdio/ultraestrutura , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transativadores/genética
2.
J Immunol ; 195(3): 1025-33, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26101320

RESUMO

Because of their unique capacity to cross-present Ags to CD8(+) T cells, mouse lymphoid tissue-resident CD8(+) dendritic cells (DCs) and their migratory counterparts are critical for priming antiviral T cell responses. High expression of the dsRNA sensor TLR3 is a distinctive feature of these cross-presenting DC subsets. TLR3 engagement in CD8(+) DCs promotes cross-presentation and the acquisition of effector functions required for driving antiviral T cell responses. In this study, we performed a comprehensive analysis of the TLR3-induced antiviral program and cell-autonomous immunity in CD8(+) DC lines and primary CD8(+) DCs. We found that TLR3-ligand polyinosinic-polycytidylic acid and human rhinovirus infection induced a potent antiviral protection against Sendai and vesicular stomatitis virus in a TLR3 and type I IFN receptor-dependent manner. Polyinosinic-polycytidylic acid-induced antiviral genes were identified by mass spectrometry-based proteomics and transcriptomics in the CD8(+) DC line. Nanostring nCounter experiments confirmed that these antiviral genes were induced by TLR3 engagement in primary CD8(+) DCs, and indicated that many are secondary TLR3-response genes requiring autocrine IFN-ß stimulation. TLR3-activation thus establishes a type I IFN-dependent antiviral program in a DC subtype playing crucial roles in priming adaptive antiviral immune responses. This mechanism is likely to shield the priming of antiviral responses against inhibition or abrogation by the viral infection. It could be particularly relevant for viruses detected mainly by TLR3, which may not trigger type I IFN production by DCs that lack TLR3, such as plasmacytoid DCs or CD8(-) DCs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interferon beta/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Apresentação Cruzada/imunologia , Humanos , Interferon beta/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Poli I-C/imunologia , Receptor de Interferon alfa e beta/imunologia , Rhinovirus/imunologia , Vírus Sendai/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia
3.
Front Immunol ; 8: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228759

RESUMO

Dendritic cells (DCs) play a central role in shaping immunogenic as well as tolerogenic adaptive immune responses and thereby dictate the outcome of adaptive immunity. Here, we report the generation of a CD8α+ DC line constitutively secreting the tolerogenic cytokine interleukin (IL)-35. IL-35 secretion led to impaired CD4+ and CD8+ T lymphocyte proliferation and interfered with their function in vitro and also in vivo. IL-35 was furthermore found to induce a tolerogenic phenotype on CD8α+ DCs, characterized by the upregulation of CD11b, downregulation of MHC class II, a reduced costimulatory potential as well as production of the immunomodulatory molecule IL-10. Vaccination of mice with IL-35-expressing DCs promoted tumor growth and reduced the severity of autoimmune encephalitis not only in a preventive but also after induction of encephalitogenic T cells. The reduction in experimental autoimmune encephalitis severity was significantly more pronounced when antigen-pulsed IL-35+ DCs were used. These findings suggest a new, indirect effector mechanism by which IL-35-responding antigen-presenting cells contribute to immune tolerance. Furthermore, IL-35-transfected DCs may be a promising approach for immunotherapy in the context of autoimmune diseases.

4.
J Exp Med ; 210(13): 2803-11, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24277150

RESUMO

Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12-mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4(+) cells, causing a drastic decrease in FoxP3(+) T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Antígeno CTLA-4/antagonistas & inibidores , Glioma/imunologia , Glioma/terapia , Interleucina-12/administração & dosagem , Linfócitos T/citologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Memória Imunológica , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Linfócitos T Reguladores/citologia
5.
Front Immunol ; 4: 246, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986758

RESUMO

Activin A, a member of the TGFß superfamily, is involved in physiological processes such as cell differentiation, tissue homeostasis, wound healing, reproduction, and in pathological conditions, such as fibrosis, cancer, and asthma. Activin enhances mast cell maturation, as well as regulatory T-cell and Langerhans cell differentiation. In this study we investigated the potential role of activin in epicutaneous sensitization with ovalbumin (OVA), notably with respect to its effect on known Th2-polarization. For this purpose, transgenic mice overexpressing activin in keratinocytes and their wild-type (WT) controls were sensitized epicutaneously with OVA. Skin biopsies were analyzed with regard to histopathological features and mRNA expression of pro-inflammatory and Th1/Th2 cytokines, and Ig levels were measured in the serum. Unexpectedly, activin overexpressing animals were protected from Th2-cytokine expression and induction of OVA-specific IgE levels compared to WT animals. On the other hand, transgenic mice were more susceptible to inflammation compared to WT littermates after tape-stripping and saline (vehicle) or OVA application, as shown by increased pro-inflammatory cytokine mRNA levels and neutrophil accumulation at the site of the treatment. We conclude that activin protects from antigen-induced cutaneous Th2-polarization through modulation of the immune response. These findings highlight the role of activin in cutaneous sensitization, allergy, and in skin homeostasis.

6.
Front Immunol ; 3: 331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162549

RESUMO

Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA