Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant J ; 117(6): 1642-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315509

RESUMO

Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Aclimatação , Luz , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086930

RESUMO

Plants are agile, plastic organisms able to adapt to everchanging circumstances. Responding to far-red (FR) wavelengths from nearby vegetation, shade-intolerant species elicit the adaptive shade-avoidance syndrome (SAS), characterized by elongated petioles, leaf hyponasty, and smaller leaves. We utilized end-of-day FR (EODFR) treatments to interrogate molecular processes that underlie the SAS leaf response. Genetic analysis established that PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) is required for EODFR-mediated constraint of leaf blade cell division, while EODFR messenger RNA sequencing data identified ANGUSTIFOLIA3 (AN3) as a potential PIF7 target. We show that PIF7 can suppress AN3 transcription by directly interacting with and sequestering AN3. We also establish that PIF7 and AN3 impose antagonistic control of gene expression via common cis-acting promoter motifs in several cell-cycle regulator genes. EODFR triggers the molecular substitution of AN3 to PIF7 at G-box/PBE-box promoter regions and a switch from promotion to repression of gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Folhas de Planta/metabolismo , Transativadores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Fator VII/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Fitocromo/metabolismo , Regiões Promotoras Genéticas/genética , Transativadores/genética
3.
Cell ; 139(6): 1170-9, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005809

RESUMO

Photoperiod sensors allow physiological adaptation to the changing seasons. The prevalent hypothesis is that day length perception is mediated through coupling of an endogenous rhythm with an external light signal. Sufficient molecular data are available to test this quantitatively in plants, though not yet in mammals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their light-sensitive proteins are thought to form an external coincidence sensor. Here, we model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, our models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modeling makes this complexity explicit and may thus contribute to crop improvement.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relógios Biológicos , Proteínas de Ligação a DNA/genética , Redes Reguladoras de Genes , Fotoperíodo , Fatores de Transcrição/genética
4.
Mol Cell Proteomics ; 21(1): 100172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740825

RESUMO

Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the "phospho-dawn." Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteômica , Fatores de Transcrição/metabolismo
5.
Biotechnol Bioeng ; 120(8): 2160-2174, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428616

RESUMO

In situ product recovery is an efficient way to intensify bioprocesses as it can perform adsorption of the desired natural products in the cultivation. However, it is common to use only one adsorbent (liquid or solid) to perform the product recovery. For this study, the use of an in situ product recovery method with three combined commercial resins (HP-20, XAD7HP, and HP-2MG) with different chemical properties was performed. A new yeast strain of Saccharomyces cerevisiae was engineered using CRISPR Cas9 (strain EJ2) to deliver heterologous expression of oxygenated acetylated taxanes that are precursors of the anticancer drug Taxol ® (paclitaxel). Microscale cultivations using a definitive screening design (DSD) were set to get the best resin combinations and concentrations to retrieve high taxane titers. Once the best resin treatment was selected by the DSD, semi-continuous cultivation in high throughput microscale was performed to increase the total taxanes yield up to 783 ± 33 mg/L. The best T5α-yl Acetate yield obtained was up to 95 ± 4 mg/L, the highest titer of this compound ever reported by a heterologous expression. It was also observed that by using a combination of the resins in the cultivation, 8 additional uncharacterized taxanes were found in the gas chromatograms compared to the dodecane overlay method. Lastly, the cell-waste reactive oxygen species concentrations from the yeast were 1.5-fold lower in the resin's treatment compared to the control with no adsorbent aid. The possible future implications of this method could be critical for bioprocess intensification, allowing the transition to a semi-continuous flow bioprocess. Further, this new methodology broadens the use of different organisms for natural product synthesis/discovery benefiting from clear bioprocess intensification advantages.


Assuntos
Antineoplásicos , Paclitaxel , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adsorção , Antineoplásicos/metabolismo , Taxoides/metabolismo
6.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693822

RESUMO

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Assuntos
Proteínas de Arabidopsis/efeitos da radiação , Arabidopsis/fisiologia , Fitocromo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
7.
J Exp Bot ; 72(8): 3263-3278, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544130

RESUMO

Phytochrome photoreceptors are known to regulate plastic growth responses to vegetation shade. However, recent reports also suggest an important role for phytochromes in carbon resource management, metabolism, and growth. Here, we use 13CO2 labelling patterns in multiallele phy mutants to investigate the role of phytochrome in the control of metabolic fluxes. We also combine quantitative data of 13C incorporation into protein and cell wall polymers, gas exchange measurements, and system modelling to investigate why biomass is decreased in adult multiallele phy mutants. Phytochrome influences the synthesis of stress metabolites such as raffinose and proline, and the accumulation of sugars, possibly through regulating vacuolar sugar transport. Remarkably, despite their modified metabolism and vastly altered architecture, growth rates in adult phy mutants resemble those of wild-type plants. Our results point to delayed seedling growth and smaller cotyledon size as the cause of the adult-stage phy mutant biomass defect. Our data signify a role for phytochrome in metabolic stress physiology and carbon partitioning, and illustrate that phytochrome action at the seedling stage sets the trajectory for adult biomass production.


Assuntos
Fitocromo , Plântula/crescimento & desenvolvimento , Biomassa , Cotilédone , Luz , Fitocromo B , Estresse Fisiológico
8.
Proc Natl Acad Sci U S A ; 115(41): 10523-10528, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30254157

RESUMO

In plants, light receptors play a pivotal role in photoperiod sensing, enabling them to track seasonal progression. Photoperiod sensing arises from an interaction between the plant's endogenous circadian oscillator and external light cues. Here, we characterize the role of phytochrome A (phyA) in photoperiod sensing. Our metaanalysis of functional genomic datasets identified phyA as a principal regulator of morning-activated genes, specifically in short photoperiods. We demonstrate that PHYA expression is under the direct control of the PHYTOCHROME INTERACTING FACTOR transcription factors, PIF4 and PIF5. As a result, phyA protein accumulates during the night, especially in short photoperiods. At dawn, phyA activation by light results in a burst of gene expression, with consequences for physiological processes such as anthocyanin accumulation. The combination of complex regulation of PHYA transcript and the unique molecular properties of phyA protein make this pathway a sensitive detector of both dawn and photoperiod.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ritmo Circadiano , Fotoperíodo , Fitocromo A/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Luz , Fitocromo A/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
9.
Proc Natl Acad Sci U S A ; 113(27): 7667-72, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330114

RESUMO

Plants sense the light environment through an ensemble of photoreceptors. Members of the phytochrome class of light receptors are known to play a critical role in seedling establishment, and are among the best-characterized plant signaling components. Phytochromes also regulate adult plant growth; however, our knowledge of this process is rather fragmented. This study demonstrates that phytochrome controls carbon allocation and biomass production in the developing plant. Phytochrome mutants have a reduced CO2 uptake, yet overaccumulate daytime sucrose and starch. This finding suggests that even though carbon fixation is impeded, the available carbon resources are not fully used for growth during the day. Supporting this notion, phytochrome depletion alters the proportion of day:night growth. In addition, phytochrome loss leads to sizeable reductions in overall growth, dry weight, total protein levels, and the expression of CELLULOSE SYNTHASE-LIKE genes. Because cellulose and protein are major constituents of plant biomass, our data point to an important role for phytochrome in regulating these fundamental components of plant productivity. We show that phytochrome loss impacts core metabolism, leading to elevated levels of tricarboxylic acid cycle intermediates, amino acids, sugar derivatives, and notably the stress metabolites proline and raffinose. Furthermore, the already growth-retarded phytochrome mutants are less responsive to growth-inhibiting abiotic stresses and have elevated expression of stress marker genes. This coordinated response appears to divert resources from energetically costly biomass production to improve resilience. In nature, this strategy may be activated in phytochrome-disabling, vegetation-dense habitats to enhance survival in potentially resource-limiting conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Fitocromo/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Estresse Fisiológico
11.
Plant Cell ; 26(1): 5-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24481073

RESUMO

Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis thaliana, have revealed many of the mechanisms by which these responses are actuated. In recent years, mathematical modeling has become a complementary tool to the experimental approach that has furthered our understanding of biological mechanisms. In this review, we present modeling examples encompassing a range of different biological processes, in particular those regulated by light. Current issues and future directions in the modeling of plant systems are discussed.


Assuntos
Arabidopsis/fisiologia , Modelos Biológicos , Transdução de Sinais , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Ritmo Circadiano , Fotoperíodo , Fitocromo/metabolismo , Fitocromo/fisiologia
12.
PLoS Genet ; 10(6): e1004416, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24922306

RESUMO

The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Nucleares/genética , Fotossíntese/genética , Ativação Transcricional/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Carotenoides/biossíntese , Clorofila/biossíntese , Fatores de Ligação G-Box/genética , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Regiões Promotoras Genéticas , Receptores de Peptídeos/biossíntese , Estações do Ano , Temperatura , Transcrição Gênica
13.
Proc Natl Acad Sci U S A ; 111(39): E4127-36, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25197087

RESUMO

Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Modelos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Carbono/metabolismo , Simulação por Computador , Ecossistema , Genes de Plantas , Redes e Vias Metabólicas , Fenótipo , Fotoperíodo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Amido/metabolismo , Processos Estocásticos , Biologia de Sistemas
14.
Mol Syst Biol ; 11(1): 776, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25600997

RESUMO

Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to cycling DOF factor 1 (CDF1) and flavin-binding, KELCH repeat, F-box 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of phytochrome-interacting factor 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.


Assuntos
Arabidopsis/genética , Ritmo Circadiano , Flores/fisiologia , Hipocótilo/crescimento & desenvolvimento , Fotoperíodo , RNA de Plantas/isolamento & purificação , Temperatura , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Circadianos/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Luz , Fitocromo B/genética , Fitocromo B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Physiol ; 169(3): 1584-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26082398

RESUMO

Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carotenoides/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Luz , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regiões Promotoras Genéticas , Plântula , Fatores de Transcrição
16.
Plant Cell ; 25(11): 4391-404, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24254125

RESUMO

Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Temperatura Baixa , Citoplasma/genética , Citoplasma/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Proteínas Nucleares/genética , Plantas Geneticamente Modificadas , Poliadenilação , Regiões Promotoras Genéticas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Transdução de Sinais/genética
17.
Proc Natl Acad Sci U S A ; 110(26): 10866-71, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754415

RESUMO

Freshly matured seeds exhibit primary dormancy, which prevents germination until environmental conditions are favorable. The establishment of dormancy occurs during seed development and involves both genetic and environmental factors that impact on the ratio of two antagonistic phytohormones: abscisic acid (ABA), which promotes dormancy, and gibberellic acid, which promotes germination. Although our understanding of dormancy breakage in mature seeds is well advanced, relatively little is known about the mechanisms involved in establishing dormancy during seed maturation. We previously showed that the SPATULA (SPT) transcription factor plays a key role in regulating seed germination. Here we investigate its role during seed development and find that, surprisingly, it has opposite roles in setting dormancy in Landsberg erecta and Columbia Arabidopsis ecotypes. We also find that SPT regulates expression of five transcription factor encoding genes: ABA-INSENSITIVE4 (ABI4) and ABI5, which mediate ABA signaling; REPRESSOR-OF-GA (RGA) and RGA-LIKE3 involved in gibberellic acid signaling; and MOTHER-OF-FT-AND-TFL1 (MFT) that we show here promotes Arabidopsis seed dormancy. Although ABI4, RGA, and MFT are repressed by SPT, ABI5 and RGL3 are induced. Furthermore, we show that RGA, MFT, and ABI5 are direct targets of SPT in vivo. We present a model in which SPT drives two antagonistic "dormancy-repressing" and "dormancy-promoting" routes that operate simultaneously in freshly matured seeds. Each of these routes has different impacts and this in turn explains the opposite effect of SPT on seed dormancy of the two ecotypes analyzed here.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dormência de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Germinação/fisiologia , Mutação , Dormência de Plantas/genética , Especificidade da Espécie
18.
Plant J ; 76(2): 247-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23909712

RESUMO

Circadian clocks confer advantages by restricting biological processes to certain times of day through the control of specific phased outputs. Control of temperature signalling is an important function of the plant oscillator, but the architecture of the gene network controlling cold signalling by the clock is not well understood. Here we use a model ensemble fitted to time-series data and a corrected Akaike Information Criterion (AICc) analysis to extend a dynamic model to include the control of the key cold-regulated transcription factors C-REPEAT BINDING FACTORs 1-3 (CBF1, CBF2, CBF3). AICc was combined with in silico analysis of genetic perturbations in the model ensemble, and selected a model that predicted mutant phenotypes and connections between evening-phased circadian clock components and CBF3 transcriptional control, but these connections were not shared by CBF1 and CBF2. In addition, our model predicted the correct gating of CBF transcription by cold only when the cold signal originated from the clock mechanism itself, suggesting that the clock has an important role in temperature signal transduction. Our data shows that model selection could be a useful method for the expansion of gene network models.


Assuntos
Proteínas de Arabidopsis/fisiologia , Relógios Circadianos , Temperatura Baixa , Modelos Biológicos , Transdução de Sinais , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas CLOCK/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Fatores de Transcrição/genética
19.
Mol Syst Biol ; 9: 650, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23511208

RESUMO

Circadian clocks exhibit 'temperature compensation', meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature-compensated clock model by adding passive temperature effects into only the light-sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature-dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems-level understanding of period control in the plant circadian oscillator.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos , Modelos Biológicos , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Modelos Teóricos , Mutação , Plantas Geneticamente Modificadas , Transdução de Sinais , Temperatura , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA