RESUMO
Bacterial regulatory RNAs (sRNAs) are important players to control gene expression. In Staphylococcus aureus, SprC is an antivirulent trans-acting sRNA known to base-pair with the major autolysin atl mRNA, preventing its translation. Using MS2-affinity purification coupled with RNA sequencing, we looked for its sRNA-RNA interactome and identified 14 novel mRNA targets. In vitro biochemical investigations revealed that SprC binds two of them, czrB and deoD, and uses a single accessible region to regulate its targets, including Atl translation. Unlike Atl regulation, the characterization of the SprC-czrB interaction pinpointed a destabilization of the czrAB cotranscript, leading to a decrease of the mRNA level that impaired CzrB zinc efflux pump expression. On a physiological standpoint, we showed that SprC expression is detrimental to combat against zinc toxicity. In addition, phagocyctosis assays revealed a significant, but moderate, increase of czrB mRNA levels in a sprC-deleted mutant, indicating a functional link between SprC and czrB upon internalization in macrophages, and suggesting a role in resistance to both oxidative and zinc bursts. Altogether, our data uncover a novel pathway in which SprC is implicated, highlighting the multiple strategies used by S. aureus to balance virulence using an RNA regulator.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Staphylococcus aureus , Zinco , Zinco/metabolismo , Zinco/toxicidade , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Virulência/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacosRESUMO
The family of ATP-binding cassette F proteins (ABC-F) is mainly made up of cytosolic proteins involved in regulating protein synthesis, and they are often part of a mechanism that confers resistance to ribosome-targeting antibiotics. The existing literature has emphasized the difficulty of purifying these recombinant proteins because of their very low solubility and stability. Here, we describe a rapid and efficient three-step purification procedure that allows for the production of untagged ABC-F proteins from Enterococcus faecium in the heterologous host Escherichia coli. After four purified ABC-F proteins were produced using this protocol, their biological activities were validated by in vitro experiment. In conclusion, our study provides an invaluable tool for obtaining large amounts of untagged and soluble ABC-F proteins that can then be used for in vitro experiments.
Assuntos
Enterococcus faecium , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Biossíntese de Proteínas , Antibacterianos/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismoRESUMO
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Assuntos
Rifampina , Staphylococcus aureus , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA não Traduzido , Rifampina/farmacologia , Fator sigma/genética , Fator sigma/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Transcrição GênicaRESUMO
Bacterial small regulatory RNAs (sRNAs) play a major role in the regulation of various cellular functions. Most sRNAs interact with mRNA targets via an antisense mechanism, modifying their translation and/or degradation. Despite considerable progresses in discovering sRNAs in Gram-positive bacteria, their functions, for the most part, are unknown. This is mainly due to difficulties in identifying their targets. To aid in the identification of sRNA targets in Gram-positive bacteria, we set up an in vivo method for fast analysis of sRNA-mediated post-transcriptional control at the 5Î regions of target mRNAs. The technology is based on the co-expression of an sRNA and a 5Î sequence of an mRNA target fused to a green fluorescent protein (GFP) reporter. The system was challenged on Staphylococcus aureus, an opportunistic Gram-positive pathogen. We analyzed several established sRNA-mRNA interactions, and in addition, we identified the ecb mRNA as a novel target for SprX2 sRNA. Using our in vivo system in combination with in vitro experiments, we demonstrated that SprX2 uses an antisense mechanism to prevent ecb mRNA translation initiation. Furthermore, we used our reporter assay to validate sRNA regulations in other Gram-positive organisms, Bacillus subtilis and Listeria monocytogenes. Overall, our method is broadly applicable to challenge the predicted sRNA-mRNA interactions in Gram-positive bacteria.
Assuntos
RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/química , Humanos , Listeria monocytogenes/genética , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/química , Pequeno RNA não Traduzido/química , Análise de Sequência de RNA , Infecções Estafilocócicas/genética , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidadeRESUMO
An overflow of regulatory RNAs (sRNAs) was identified in a wide range of bacteria. We designed and implemented a new resource for the hundreds of sRNAs identified in Staphylococci, with primary focus on the human pathogen Staphylococcus aureus. The "Staphylococcal Regulatory RNA Database" (SRD, http://srd.genouest.org/) compiled all published data in a single interface including genetic locations, sequences and other features. SRD proposes novel and simplified identifiers for Staphylococcal regulatory RNAs (srn) based on the sRNA's genetic location in S. aureus strain N315 which served as a reference. From a set of 894 sequences and after an in-depth cleaning, SRD provides a list of 575 srn exempt of redundant sequences. For each sRNA, their experimental support(s) is provided, allowing the user to individually assess their validity and significance. RNA-seq analysis performed on strains N315, NCTC8325, and Newman allowed us to provide further details, upgrade the initial annotation, and identified 159 RNA-seq independent transcribed sRNAs. The lists of 575 and 159 sRNAs sequences were used to predict the number and location of srns in 18 S. aureus strains and 10 other Staphylococci. A comparison of the srn contents within 32 Staphylococcal genomes revealed a poor conservation between species. In addition, sRNA structure predictions obtained with MFold are accessible. A BLAST server and the intaRNA program, which is dedicated to target prediction, were implemented. SRD is the first sRNA database centered on a genus; it is a user-friendly and scalable device with the possibility to submit new sequences that should spread in the literature.
Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/genética , Staphylococcus aureus/genética , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional , Genoma Bacteriano , Filogenia , Pequeno RNA não Traduzido , Análise de Sequência de RNA , SoftwareRESUMO
Staphylococcus aureus is a leading pathogen for animals and humans, not only being one of the most frequently isolated bacteria in hospital-associated infections but also causing diseases in the community. To coordinate the expression of its numerous virulence genes for growth and survival, S. aureus uses various signalling pathways that include two-component regulatory systems, transcription factors, and also around 250 regulatory RNAs. Biological roles have only been determined for a handful of these sRNAs, including cis, trans, and cis-trans acting RNAs, some internally encoding small, functional peptides and others possessing dual or multiple functions. Here we put forward an inventory of these fascinating sRNAs; the proteins involved in their activities; and those involved in stress response, metabolisms, and virulence.
Assuntos
RNA Bacteriano/fisiologia , Staphylococcus aureus/genética , Transcriptoma/fisiologia , Animais , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , RNA Antissenso/fisiologia , RNA Interferente Pequeno/fisiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Estresse Fisiológico/genéticaRESUMO
Staphylococcus aureus RNAIII is a dual-function regulatory RNA that controls the expression of multiple virulence genes and especially the transition from adhesion to the production of exotoxins. However, its contribution to S. aureus central metabolism remains unclear. Using MS2-affinity purification coupled with RNA sequencing, we uncovered more than 50 novel RNAIII-mRNA interactions. Among them, we demonstrate that RNAIII is a major activator of the rpiRc gene, encoding a regulator of the pentose phosphate pathway (PPP). RNAIII binds the 5' UTR of rpiRc mRNA to favor ribosome loading, leading to an increased expression of RpiRc and, subsequently, of two PPP enzymes. Finally, we show that RNAIII and RpiRc are involved in S. aureus fitness in media supplemented with various carbohydrate sources related to PPP and glycolysis. Collectively, our data depict an unprecedented phenotype associated with the RNAIII regulon, especially the direct implication of RNAIII in central metabolic activity modulation. These findings show that the contribution of RNAIII in Staphylococcus aureus adaptation goes far beyond what was initially reported. IMPORTANCE: Staphylococcus aureus is a major human pathogen involved in acute and chronic infections. Highly recalcitrant to antibiotic treatment, persistent infections are mostly associated with the loss of RNAIII expression, a master RNA regulator responsible for the switch from colonization to infection. Here, we used the MS2 affinity purification coupled with RNA sequencing approach to identify novel mRNA targets of RNAIII and uncover novel functions. We demonstrate that RNAIII is an activator of the expression of genes involved in the pentose phosphate pathway and is implicated in the adjustment of bacterial fitness as a function of carbohydrate sources. Taken together, our results demonstrate an unprecedented role of RNAIII that goes beyond the knowledge gained so far and contributes to a better understanding of the role of RNAIII in bacterial adaptation expression and the coordination of a complex regulatory network.
Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Via de Pentose Fosfato , RNA Bacteriano , Staphylococcus aureus , Via de Pentose Fosfato/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Tight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). Remarkably, entry and accommodation of aminoacylated-tmRNA into stalled ribosomes occur without a codon-anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon-anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for DeltasmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.
Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , RNA Bacteriano/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ribossomos/fisiologia , Alanina/metabolismo , Anticódon/genética , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fator de Iniciação 1 em Procariotos/química , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Bacteriano/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Thermus thermophilus/metabolismo , Thermus thermophilus/ultraestruturaRESUMO
Eubacterial ribosomes stalled on defective mRNAs are released through a mechanism referred to as trans-translation, depending on the coordinated actions of small protein B (SmpB) and transfer messenger RNA (tmRNA). A series of tmRNA variants with deletions in each structural domain were produced. Their structures were monitored by enzymatic and chemical probes in vitro, in the presence and absence of SmpB. Dissociation constants between these RNAs and SmpB from Aquifex aeolicus were derived by surface plasmon resonance (SPR) combined with filter binding assays. Three independent experimental evidences, including filter binding assays, SPR, and concentration titrations of the RNA-protein reactivity changes toward structural probes, indicate that the binding site that has the highest affinity for the protein is located outside the tRNA domain, upstream of the internal tag. The minimal tmRNA fragment that contains this high affinity site for SmpB, and also contains another site of lower affinity, includes the tag reading frame and three downstream pseudoknots that form a ring structure in solution.
Assuntos
Proteínas de Bactérias/química , RNA Mensageiro/química , RNA de Transferência/química , Proteínas de Ligação a RNA/química , Sítios de Ligação/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/genética , RNA de Transferência/genética , Ressonância de Plasmônio de SuperfícieRESUMO
During trans-translation, stalled bacterial ribosomes are rescued by small protein B (SmpB) and by transfer-messenger RNA (tmRNA). Stalled ribosomes switch translation from the defective messages to a short internal reading frame on tmRNA that tags the nascent peptide chain for degradation and recycles the ribosomes. We present evidences that SmpB binds the large and small ribosomal subunits in vivo and in vitro. The binding between SmpB and the ribosomal subunits is very tight, with a dissociation constant of 1.7 x 10(-10) M, similar to its K(D) for the 70S ribosome or for tmRNA. tmRNA displaces SmpB from its 50S binding but not from the 30S. In vivo, SmpB is detected on the 50S when trans-translation is impaired by lacking tmRNA or a functional SmpB. SmpB contacts the large subunit transiently and early during the trans-translational process. The affinity of SmpB for the two ribosomal subunits is modulated by tmRNA in the course of trans-translation. It is the first example of two copies of the same protein interacting with two different functional sites of the ribosomes.
Assuntos
Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Escherichia coli/genética , Mutação , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Stalled bacterial ribosomes are freed by transfer-messenger RNA (tmRNA). With the help of small protein B (SmpB), protein synthesis restarts and tmRNA adds a tag to the stalled protein for destruction. The conformation of a 347 nt long tmRNA from a thermophile and its interactions with SmpB were monitored using structural probes. The RNA is highly folded, including the reading frame, with <30% of unpaired residues. Footprints between SmpB and tmRNA are in the elbow of the tRNA domain, in some pseudoknots including one essential for function and in the lower part of the stem exiting the tRNA domain. The footprints outside the tRNA domain are scattered onto the tmRNA sequence, but form a cluster onto its tertiary structure derived from cryo-EM data. Some footprints flank the first triplet to be translated in tmRNA, suggesting that SmpB participates in the insertion of the tmRNA-encoded reading frame into the decoding center. To discriminate between a conformational rearrangement of tmRNA and independent binding sites, surface plasmon resonance was used and has identified three independent binding sites of SmpB on the RNA, including the site on the tRNA domain. Accordingly, SmpB is proposed to move on the tmRNA scaffold during trans-translation.
Assuntos
Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência de RNA , Transcrição Gênica , Aminoacilação de RNA de TransferênciaRESUMO
Trans-translation is a process that recycles ribosomes stalled on problematic mRNAs. tmRNA, coded by the DeltassrA gene, is a major component of trans-translation. Bacteria lacking tmRNA are more sensitive to several inhibitors of protein synthesis when compared to a wild type strain. We measured bacterial growth of the DeltassrA and wild type strains in Escherichia coli in the presence of 14 antibiotics including some that do not target protein synthesis. Both the optical density of the bacterial cultures and the number of viable cells were monitored. For the ribosome-targeted antibiotics, sensitization was observed on erythromycin, chloramphenicol, kanamycin, puromycin and streptomycin. Minor or no effects were observed with clindamycin, tetracycline and spectinomycin. Surprisingly, the DeltassrA strain is more sensitive than wild type to inhibitors of cell wall synthesis: fosfomycin and ampicillin. No growth difference was observed on drugs with other target sites: ofloxacin, norfloxacin, rifampicin and trimethoprim. Sensitization to antibiotics having target sites other than the ribosome suggests that trans-translation could influence antibiotic-induced stress responses. In trans-translation-deficient bacteria, cell death is significantly enhanced by the two aminoglycosides that induce translational misreading, streptomycin and kanamycin.
Assuntos
Aminoglicosídeos/farmacologia , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Biossíntese de Proteínas/efeitos dos fármacos , RNA Bacteriano/fisiologia , Antibacterianos/farmacologia , Proliferação de Células , Parede Celular/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologiaRESUMO
A eubacterial ribosome stalled on a defective mRNA can be released through a quality control mechanism referred to as trans-translation, which depends on the coordinating binding actions of transfer-messenger RNA, small protein B, and ribosome protein S1. By means of cryo-electron microscopy, we obtained a map of the complex composed of a stalled ribosome and small protein B, which appears near the decoding center. This result suggests that, when lacking a codon, the A-site on the small subunit is a target for small protein B. To investigate the role of S1 played in trans-translation, we obtained a cryo-electron microscopic map, including a stalled ribosome, transfer-messenger RNA, and small protein Bs but in the absence of S1. In this complex, several connections between the 30 S subunit and transfer-messenger RNA that appear in the +S1 complex are no longer found. We propose the unifying concept of scaffolding for the roles of small protein B and S1 in binding of transfer-messenger RNA to the ribosome during trans-translation, and we infer a pathway of sequential binding events in the initial phase of trans-translation.
Assuntos
Substâncias Macromoleculares/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Thermus thermophilus/genéticaRESUMO
To rescue stalled ribosomes, eubacteria employ a molecule, transfer messenger RNA (tmRNA), which functions both as a tRNA and as an mRNA. With the help of small protein B (SmpB), tmRNA restarts protein synthesis and adds by the trans-translation mechanism a peptide tag to the stalled protein to target it for destruction by cellular proteases. Here, the cellular location and expression of endogenous SmpB were monitored in vivo. We report that SmpB is associated with 70S ribosomes and not in the soluble fraction, independently of the presence of tmRNA. In vitro, SmpB that is pre-bound to a stalled ribosome can trigger initiation of trans-translation. Our results demonstrate the existence of a novel pathway for the entry of tmRNA to the ribosome and for the trans-transfer of a nascent peptide chain from peptidyl-tRNA to charged tmRNA.