Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 9(27): 29263-29273, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005796

RESUMO

In this work, we use a combination of dispersion-corrected density functional theory (DFT-D3) and the TiberCAD framework for the first time to investigate a newly designed and synthesized class of (C6H10N2)[CuCl4] 2D-type perovskite. The inter- and intra-atomic reorganization in the crystal packing and the type of interaction forming in the active area have been discussed via Hirshfeld surface (HS) analyses. A distinct charge transfer from CuCl4 to [C6H10N2] is identified by frontier molecular orbitals (FMOs) and density of states (DOS). This newly designed narrow-band gap small-molecule perovskite, with an energy gap (E g) of 2.11 eV, exhibits a higher fill factor (FF = 81.34%), leading to an open-circuit voltage (V oc) of 1.738 V and a power conversion efficiency (PCE) approaching ∼10.20%. The interaction between a donor (D) and an acceptor (A) results in a charge transfer complex (CT) through the formation of hydrogen bonds (Cl-H), as revealed by QTAIM analysis. These findings were further supported by 2D-LOL and 3D-ELF analyses by visualizing excess electrons surrounding the acceptor entity. Finally, we performed numerical simulations of solar cell structures using TiberCAD software.

2.
RSC Adv ; 10(10): 5864-5873, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497437

RESUMO

A slow evaporation method has permitted the crystallization of two novel crystals of (2-aminomethyl)pyridindiumdihalide C6H10N2,2Br (1) and C6H10N2,2Cl·H2O (2). The structures of the prepared compounds (1) and (2) were elucidated by single-crystal X-ray diffraction which revealed that they crystallize, respectively, with triclinic and monoclinic symmetries. Their crystal packing was stabilized by non-covalent interactions, including N-H⋯Br, C-H⋯Br, N-H⋯Cl, O-H⋯Cl and N-H⋯O hydrogen bonds. 3-D Hirshfeld surface analysis followed by 2-D fingerprint schemes gives insights into the intermolecular interactions in the crystalline structure. Furthermore, the FT-IR spectroscopy of these two compounds was carried out. The synthesized products were also screened for in vitro antioxidant and antimicrobial activities, which reveals their favourable antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) as well as the discolouration of ß-carotene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA