Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 202: 415-431, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28665423

RESUMO

Over 8 million tonnes of sugar beet are grown annually in the UK. Sugar beet pulp (SBP) is the main by-product of sugar beet processing which is currently dried and sold as a low value animal feed. SBP is a rich source of carbohydrates, mainly in the form of cellulose and pectin, including d-glucose (Glu), l-arabinose (Ara) and d-galacturonic acid (GalAc). This work describes the technical feasibility of an integrated biorefinery concept for the fractionation of SBP and conversion of these monosaccharides into value-added products. SBP fractionation is initially carried out by steam explosion under mild conditions to yield soluble pectin and insoluble cellulose fractions. The cellulose is readily hydrolysed by cellulases to release Glu that can then be fermented by a commercial yeast strain to produce bioethanol at a high yield. The pectin fraction can be either fully hydrolysed, using physico-chemical methods, or selectively hydrolysed, using cloned arabinases and galacturonases, to yield Ara-rich and GalAc-rich streams. These monomers can be separated using either Centrifugal Partition Chromatography (CPC) or ultrafiltration into streams suitable for subsequent enzymatic upgrading. Building on our previous experience with transketolase (TK) and transaminase (TAm) enzymes, the conversion of Ara and GalAc into higher value products was explored. In particular the conversion of Ara into l-gluco-heptulose (GluHep), that has potential therapeutic applications in hypoglycaemia and cancer, using a mutant TK is described. Preliminary studies with TAm also suggest GluHep can be selectively aminated to the corresponding chiral aminopolyol. The current work is addressing the upgrading of the remaining SBP monomer, GalAc, and the modelling of the biorefinery concept to enable economic and Life Cycle Analysis (LCA).


Assuntos
Beta vulgaris/metabolismo , Carboidratos/biossíntese , Preparações Farmacêuticas/metabolismo , Beta vulgaris/química , Carboidratos/química , Preparações Farmacêuticas/química
2.
Microb Cell Fact ; 16(1): 58, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381218

RESUMO

BACKGROUND: Geobacillus thermoglucosidasius is a thermophilic, natural ethanol producer and a potential candidate for commercial bioethanol production. Previously, G. thermoglucosidasius has been genetically modified to create an industrially-relevant ethanol production strain. However, creating chromosomal integrations and deletions in Geobacillus spp. is laborious. Here we describe a new technique to create marker-less mutations in Geobacillus utilising a novel homologous recombination process. RESULTS: Our technique incorporates counter-selection using ß-glucosidase and the synthetic substrate X-Glu, in combination with a two-step homologous recombination process where the first step is a selectable double-crossover event that deletes the target gene. We demonstrate how we have utilised this technique to delete two components of the proteinaceous shell of the Geobacillus propanediol-utilization microcompartment, and simultaneously introduce an oxygen-sensitive promoter in front of the remaining shell-component genes and confirm its functional incorporation. CONCLUSION: The selectable deletion of the target gene in the first step of our process prevents re-creation of wild-type which can occur in most homologous recombination techniques, circumventing the need for PCR screening to identify mutants. Our new technique therefore offers a faster, more efficient method of creating mutants in Geobacillus.


Assuntos
Alelos , Deleção de Genes , Engenharia Genética/métodos , Geobacillus/genética , Recombinação Homóloga , Mutação , Etanol/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Deleção de Sequência , beta-Glucosidase/metabolismo
3.
Bioresour Technol ; 269: 195-202, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30172183

RESUMO

Sugar beet pulp (SBP) fractionated by steam explosion, released sugar beet pectin (SB-pectin) which was selectively hydrolysed using a novel α-l-arabinofuranosidase (AF), yielding monomeric l-arabinose (Ara) and a galacturonic acid rich backbone (GABB). AF was immobilised on an epoxy-functionalised resin with 70% overall immobilisation yield. Pretreatment of SB-pectin, to remove coloured compounds, improved the stability of the immobilised AF, allowing its reutilisation for up to 10 reaction cycles in a stirred tank reactor. Continuous hydrolysis of SB-pectin was subsequently performed using a packed bed reactor (PBR) with immobilised AF. Reactor performance was evaluated using a Design of Experiment approach. Pretreated SB-pectin hydrolysis was run for 7 consecutive days maintaining 73% of PBR performance. Continuous separation of Ara from GABB was achieved by tangential flow ultrafiltration with 92% Ara recovery. These results demonstrate the feasibility of establishing a continuous bioprocess to obtain Ara from the inexpensive SBP biomass.


Assuntos
Beta vulgaris , Pectinas , Arabinose , Reatores Biológicos , Hidrólise , Açúcares
4.
J Chromatogr A ; 1497: 56-63, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28366567

RESUMO

The isolation of component sugars from biomass represents an important step in the bioprocessing of sustainable feedstocks such as sugar beet pulp. Centrifugal partition chromatography (CPC) is used here, as an alternative to multiple resin chromatography steps, to fractionate component monosaccharides from crude hydrolysed sugar beet pulp pectin. CPC separation of samples, prepared in the stationary phase, was carried out using an ethanol: ammonium sulphate (300gL-1) phase system (0.8:1.8v:v) in ascending mode. This enabled removal of crude feedstream impurities and separation of monosaccharides into three fractions (l-rhamnose, l-arabinose and d-galactose, and d-galacturonic acid) in a single step. Throughput was improved three-fold by increasing sample injection volume, from 4 to 16% of column volume, with similar separation performance maintained in all cases. Extrusion of the final galacturonic acid fraction increased the eluted solute concentration, reduced the total separation time by 24% and removed the need for further column regeneration. Reproducibility of the separation after extrusion was validated by using multiple stacked injections. Scale-up was performed linearly from a semi-preparative 250mL column to a preparative 950mL column with a scale-up ratio of 3.8 applied to mobile phase flow rate and sample injection volume. Throughputs of 9.4gL-1h-1 of total dissolved solids were achieved at the preparative scale with a throughput of 1.9gL-1h-1 of component monosaccharides. These results demonstrate the potential of CPC for both impurity removal and target fractionation within biorefinery separations.


Assuntos
Beta vulgaris/química , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Monossacarídeos/isolamento & purificação , Centrifugação , Ácidos Hexurônicos/isolamento & purificação , Hidrólise , Pectinas/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA