Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639774

RESUMO

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


Assuntos
Proteínas Quinases Ativadas por AMP , Histonas , Humanos , Histonas/genética , Regulação para Baixo , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
2.
Nat Commun ; 15(1): 5230, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898025

RESUMO

Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Descoberta de Drogas/métodos , Metabolômica/métodos , Microbiota , Metagenômica/métodos , Espectroscopia de Ressonância Magnética , Bibliotecas de Moléculas Pequenas/química
3.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398257

RESUMO

Microbial natural products remain an important resource for drug discovery. Yet, commonly employed discovery techniques are plagued by the rediscovery of known compounds, the relatively few microbes that can be cultured, and laboratory growth conditions that do not elicit biosynthetic gene expression among myriad other challenges. Here we introduce a culture independent approach to natural product discovery that we call the Small Molecule In situ Resin Capture (SMIRC) technique. SMIRC exploits in situ environmental conditions to elicit compound production and represents a new approach to access poorly explored chemical space by capturing natural products directly from the environments in which they are produced. In contrast to traditional methods, this compound-first approach can capture structurally complex small molecules across all domains of life in a single deployment while relying on Nature to provide the complex and poorly understood environmental cues needed to elicit biosynthetic gene expression. We illustrate the effectiveness of SMIRC in marine habitats with the discovery of numerous new compounds and demonstrate that sufficient compound yields can be obtained for NMR-based structure assignment. Two new compound classes are reported including one novel carbon skeleton that possesses a functional group not previously observed among natural products and a second that possesses potent biological activity. We introduce expanded deployments, in situ cultivation, and metagenomics as methods to facilitate compound discovery, enhance yields, and link compounds to producing organisms. This compound first approach can provide unprecedented access to new natural product chemotypes with broad implications for drug discovery.

4.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034710

RESUMO

Tumors acquire an increased ability to obtain and metabolize nutrients. Here, we engineered and implanted adipocytes to outcompete tumors for nutrients and show that they can substantially reduce cancer progression. Growing cells or xenografts from several cancers (breast, colon, pancreas, prostate) alongside engineered human adipocytes or adipose organoids significantly suppresses cancer progression and reduces hypoxia and angiogenesis. Transplanting modulated adipocyte organoids in pancreatic or breast cancer mouse models nearby or distal from the tumor significantly suppresses its growth. To further showcase therapeutic potential, we demonstrate that co-culturing tumor organoids derived from human breast cancers with engineered patient-derived adipocytes significantly reduces cancer growth. Combined, our results introduce a novel cancer therapeutic approach, termed adipose modulation transplantation (AMT), that can be utilized for a broad range of cancers.

5.
Sci Adv ; 8(4): eabi7711, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089788

RESUMO

Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.


Assuntos
Antibacterianos , Neoplasias , Antibacterianos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia
6.
Commun Biol ; 5(1): 99, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087225

RESUMO

Gastrointestinal toxicity is a major concern in the development of drugs. Here, we establish the ability to use murine small and large intestine-derived monolayers to screen drugs for toxicity. As a proof-of-concept, we applied this system to assess gastrointestinal toxicity of ~50 clinically used oncology drugs, encompassing diverse mechanisms of action. Nearly all tested drugs had a deleterious effect on the gut, with increased sensitivity in the small intestine. The identification of differential toxicity between the small and large intestine enabled us to pinpoint differences in drug uptake (antifolates), drug metabolism (cyclophosphamide) and cell signaling (EGFR inhibitors) across the gut. These results highlight an under-appreciated distinction between small and large intestine toxicity and suggest distinct tissue properties important for modulating drug-induced gastrointestinal toxicity. The ability to accurately predict where and how drugs affect the murine gut will accelerate preclinical drug development.


Assuntos
Antineoplásicos/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Enteropatias/induzido quimicamente , Mucosa Intestinal/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Intestinos/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Theranostics ; 10(14): 6261-6277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483452

RESUMO

Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Plasticidade Celular/fisiologia , Reprogramação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Fisiológico
8.
Clin Epigenetics ; 11(1): 43, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850015

RESUMO

BACKGROUND: A multitude of recent studies has observed common epigenetic changes develop in tumour cells of multiple lineages following exposure to stresses such as hypoxia, chemotherapeutics, immunotherapy or targeted therapies. A significant increase in the transcriptionally repressive mark trimethylated H3K9 (H3K9me3) is becoming associated with treatment-resistant phenotypes suggesting upstream mechanisms may be a good target for therapy. We have reported that the increase in H3K9me3 is derived from the methyltransferases SETDB1 and SETDB2 following treatment in melanoma, lung, breast and colorectal cancer cell lines, as well as melanoma patient data. Other groups have observed a number of characteristics such as epigenetic remodelling, increased interferon signalling, cell cycle inhibition and apoptotic resistance that have also been reported by us suggesting these independent studies are investigating similar or identical phenomena. MAIN BODY: Firstly, this review introduces reports of therapy-induced reprogramming in cancer populations with highly similar slow-cycling phenotypes that suggest a role for both IFN signalling and epigenetic remodelling in the acquisition of drug tolerance. We then describe plausible connections between the type 1 IFN pathway, slow-cycling phenotypes and these epigenetic mechanisms before reviewing recent evidence on the roles of SETDB1 and SETDB2, alongside their product H3K9me3, in treatment-induced reprogramming and promotion of drug resistance. The potential mechanisms for the activation of SETDB1 and SETDB2 and how they might arise in treatment is also discussed mechanistically, with a focus on their putative induction by inflammatory signalling. Moreover, we theorise their timely role in attenuating inflammation after their activation in order to promote a more resilient phenotype through homeostatic coordination of H3K9me3. We also examine the relatively uncharacterized functions of SETDB2 with some comparison to the more well-known qualities of SETDB1. Finally, an emerging overall mechanism for the epigenetic maintenance of this transient phenotype is outlined by summarising the collective literature herein. CONCLUSION: A number of converging phenotypes outline a stress-responsive mechanism for SETDB1 and SETDB2 activation and subsequent increased survival, providing novel insights into epigenetic biology. A clearer understanding of how SETDB1/2-mediated transcriptional reprogramming can subvert treatment responses will be invaluable in improving length and efficacy of modern therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , Animais , Reprogramação Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon Tipo I/metabolismo , Neoplasias/tratamento farmacológico , Fenótipo , Transdução de Sinais
9.
Cancer Med ; 8(3): 1186-1196, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30793515

RESUMO

Most BRAF-mutant melanoma patients experience a fulminate relapse after several months of treatment with BRAF/MEK inhibitors. To improve therapeutic efficacy, natural plant-derived compounds might be considered as potent additives. Here, we show that magnolol, a constituent of Magnolia officinalis, induced G1 arrest, apoptosis and cell death in BRAF- and NRAS-mutant melanoma cells at low concentration, with no effect in BRAF- and NRAS wild-type melanoma cells and human keratinocytes. This was confirmed in a 3D spheroid model. The apoptosis-inducing effect of magnolol was completely rescued by activating Akt suggesting a mechanism relying primarily on Akt signaling. Magnolol significantly downregulated the PI3K/Akt pathway which led to a global decrease of the active histone mark H3K4me3. Alongside, the repressive histone mark H3K9me3 was increased as a response to DNA damage. Magnolol-induced alterations of histone modifications are reversible upon activation of the Akt pathway. Magnolol-induced a synergistic effect in combination with either BRAF/MEK inhibitors dabrafenib/trametinib or docetaxel at a lower concentration than usually applied in melanoma patients. Combination of magnolol with targeted therapy or chemotherapy also led to analogous effects on histone marks, which was rescued by Akt pathway activation. Our study revealed a novel epigenetic mechanism of magnolol-induced cell death in melanoma. Magnolol might therefore be a clinically useful addition to BRAF/MEK inhibitors with enhanced efficacy delaying or preventing disease recurrence.


Assuntos
Compostos de Bifenilo/farmacologia , Epigênese Genética/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , Lignanas/farmacologia , Proteínas de Membrana/genética , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos
10.
Epigenomics ; 11(7): 732-737, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31070054

RESUMO

Aim: To investigate the integrated epigenetic regulation of acquired drug resistance in cancer. Materials & methods: Our gene expression data of five induced drug-tolerant cell models, one resistant cell line and one publicly available drug-resistant dataset were integrated to identify common differentially expressed genes and pathways. ChIP-seq and DNA methylation by HM450K beadchip were used to study the epigenetic profile of differential expressed genes. Results & conclusion: Integrated transcriptomic analysis identified a common 'viral mimicry' related gene signature in induced drug-tolerant cells and the resistant state. Analysis of the epigenetic regulation revealed a common set of down-regulated genes, which are marked and regulated by a concomitant loss of H3K4me3, gain of H3K9me3 and increment of regional DNA methylation levels associated with tumor suppressor genes and apoptotic signaling.


Assuntos
Neoplasias/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Tolerância a Medicamentos/genética , Perfilação da Expressão Gênica/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias/genética , Neoplasias/mortalidade , Regiões Promotoras Genéticas , Análise de Sobrevida
11.
J Cell Commun Signal ; 12(1): 133-141, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29192388

RESUMO

The enthusiasm about successful novel therapeutic strategies in cancer is often quickly dampened by the development of drug resistance. This is true for targeted therapies using tyrosine kinase inhibitors for EGFR or BRAF mutant cancers, but is also an increasingly recognized problem for immunotherapies. One of the major obstacles of successful cancer therapy is tumor heterogeneity of genotypic and phenotypic features. Historically, drivers for drug resistance have been suspected and found on the genetic level, with mutations either being pre-existing in a subset of cancer cells or emerging de novo to mediate drug resistance. In contrast to that, our group and others identified a non-mutational adaptive response, resulting in a reversible, drug tolerant, slow cycling phenotype that precedes the emergence of permanent drug resistance and is triggered by prolonged drug exposure. More recently, studies described the importance of initially reversible transcriptional reprogramming for the development of acquired drug resistance, identified factors important for the survival of the slow cycling phenotype and investigated the relationship of mutational and non-mutational resistance mechanisms. However, the connection and relative importance of mutational and adaptive drug resistance in relation to the in vitro models at hand and the clinically observed response patterns remains poorly defined. In this review we focus on adaptive intrinsic phenotypic plasticity in cancer cells that leads to the drug tolerant slow cycling state, which eventually transitions to permanent resistance, and propose a general model based on current literature, to describe the development of acquired drug resistance.

12.
Clin Cancer Res ; 24(5): 1090-1102, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196297

RESUMO

Purpose: Identify and characterize novel combinations of sorafenib with anti-inflammatory painkillers to target difficult-to-treat RAS-mutant cancer.Experimental Design: The cytotoxicity of acetylsalicylic acid (aspirin) in combination with the multikinase inhibitor sorafenib (Nexavar) was assessed in RAS-mutant cell lines in vitro The underlying mechanism for the increased cytotoxicity was investigated using selective inhibitors and shRNA-mediated gene knockdown. In vitro results were confirmed in RAS-mutant xenograft mouse models in vivoResults: The addition of aspirin but not isobutylphenylpropanoic acid (ibruprofen) or celecoxib (Celebrex) significantly increased the in vitro cytotoxicity of sorafenib. Mechanistically, combined exposure resulted in increased BRAF/CRAF dimerization and the simultaneous hyperactivation of the AMPK and ERK pathways. Combining sorafenib with other AMPK activators, such as metformin or A769662, was not sufficient to decrease cell viability due to sole activation of the AMPK pathway. The cytotoxicity of sorafenib and aspirin was blocked by inhibition of the AMPK or ERK pathways through shRNA or via pharmacologic inhibitors of RAF (LY3009120), MEK (trametinib), or AMPK (compound C). The combination was found to be specific for RAS/RAF-mutant cells and had no significant effect in RAS/RAF-wild-type keratinocytes or melanoma cells. In vivo treatment of human xenografts in NSG mice with sorafenib and aspirin significantly reduced tumor volume compared with each single-agent treatment.Conclusions: Combination sorafenib and aspirin exerts cytotoxicity against RAS/RAF-mutant cells by simultaneously affecting two independent pathways and represents a promising novel strategy for the treatment of RAS-mutant cancers. Clin Cancer Res; 24(5); 1090-102. ©2017 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Aspirina/farmacologia , Neoplasias/tratamento farmacológico , Sorafenibe/farmacologia , Proteínas ras/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aspirina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 9(9): 8206-8222, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492189

RESUMO

Besides somatic mutations or drug efflux, epigenetic reprogramming can lead to acquired drug resistance. We recently have identified early stress-induced multi-drug tolerant cancer cells termed induced drug-tolerant cells (IDTCs). Here, IDTCs were generated using different types of cancer cell lines; melanoma, lung, breast and colon cancer. A common loss of the H3K4me3 and H3K27me3 and gain of H3K9me3 mark was observed as a significant response to drug exposure or nutrient starvation in IDTCs. These epigenetic changes were reversible upon drug holidays. Microarray, qRT-PCR and protein expression data confirmed the up-regulation of histone methyltransferases (SETDB1 and SETDB2) which contribute to the accumulation of H3K9me3 concomitantly in the different cancer types. Genome-wide studies suggest that transcriptional repression of genes is due to concordant loss of H3K4me3 and regional increment of H3K9me3. Conversely, genome-wide CpG site-specific DNA methylation showed no common changes at the IDTC state. This suggests that distinct histone methylation patterns rather than DNA methylation are driving the transition from parental to IDTCs. In addition, silencing of SETDB1/2 reversed multi drug tolerance. Alterations of histone marks in early multi-drug tolerance with an increment in H3K9me3 and loss of H3K4me3/H3K27me3 is neither exclusive for any particular stress response nor cancer type specific but rather a generic response.

14.
Cancer Res ; 76(7): 1690-7, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801977

RESUMO

The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial-mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. Cancer Res; 76(7); 1690-7. ©2016 AACR.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Melanoma/genética , Proteínas Proto-Oncogênicas/genética , Receptores Notch/genética , Neoplasias Cutâneas/genética , Humanos , Receptor Notch4 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA