Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Annu Rev Genet ; 56: 339-368, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36070560

RESUMO

Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.


Assuntos
Espermatogênese , Transcriptoma , Humanos , Masculino , Transcriptoma/genética , Espermatogênese/genética , Testículo/metabolismo , Perfilação da Expressão Gênica , Diferenciação Celular/genética
2.
J Mol Cell Cardiol ; 175: 62-66, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584478

RESUMO

Myh6-Cre transgenic mouse line was known to express Cre recombinase only in the heart. Nevertheless, during breeding Myh6-Cre to Rosa26fstdTom reporter (tdTom) mouse line, we observed that a significant part of their F2 tdTom/+ offspring had tdTom reporter gene universally activated. Our results show that Myh6-Cre transgenic mice have Cre recombinase activity in a subpopulation of the male germline cells, and that Myh6 gene transcripts are enriched in the interstitial Leydig cells and the undifferentiated spermatogonia stem cells. In summary, the current study confirms that the previously known "heart-specific" Myh6 promoter drives Cre expression in the testis.


Assuntos
Células Germinativas , Integrases , Masculino , Camundongos , Animais , Regiões Promotoras Genéticas/genética , Camundongos Transgênicos , Integrases/genética , Integrases/metabolismo , Células Germinativas/metabolismo
3.
Genes Dev ; 29(21): 2312-24, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26545815

RESUMO

Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1(+); high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1(+); moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT(+)). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor-ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Fatores de Transcrição/genética , Animais , Caderinas/genética , Células Cultivadas , Metilação de DNA , Epigenômica , Gametogênese/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptores Odorantes/genética , Transdução de Sinais/genética , Antígenos Thy-1/metabolismo
4.
Nature ; 460(7254): 473-8, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19525931

RESUMO

Because nucleosomes are widely replaced by protamine in mature human sperm, the epigenetic contributions of sperm chromatin to embryo development have been considered highly limited. Here we show that the retained nucleosomes are significantly enriched at loci of developmental importance, including imprinted gene clusters, microRNA clusters, HOX gene clusters, and the promoters of stand-alone developmental transcription and signalling factors. Notably, histone modifications localize to particular developmental loci. Dimethylated lysine 4 on histone H3 (H3K4me2) is enriched at certain developmental promoters, whereas large blocks of H3K4me3 localize to a subset of developmental promoters, regions in HOX clusters, certain noncoding RNAs, and generally to paternally expressed imprinted loci, but not paternally repressed loci. Notably, trimethylated H3K27 (H3K27me3) is significantly enriched at developmental promoters that are repressed in early embryos, including many bivalent (H3K4me3/H3K27me3) promoters in embryonic stem cells. Furthermore, developmental promoters are generally DNA hypomethylated in sperm, but acquire methylation during differentiation. Taken together, epigenetic marking in sperm is extensive, and correlated with developmental regulators.


Assuntos
Cromatina/metabolismo , Genes/genética , Nucleossomos/metabolismo , Espermatozoides/metabolismo , Metilação de DNA , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Impressão Genômica , Genômica , Humanos , Masculino , MicroRNAs/genética , Família Multigênica/genética , Regiões Promotoras Genéticas , Protaminas/metabolismo
5.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854089

RESUMO

There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mislocalized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/B2/B3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 protein or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone- protamine 1/2 ratio and modified levels of cytoskeletal proteins. We detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions, which was not true for healthy normozoospermic men. In conclusion, our findings expand the current knowledge regarding the connection between Protamine 2 and Septin 12 expression and localization, resulting in low sperm motility and morphological abnormalities.

6.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559249

RESUMO

The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. SIGNIFICANCE: We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their "dual characteristics" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.

7.
BMC Bioinformatics ; 14: 337, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24261665

RESUMO

BACKGROUND: DNA methylation has been linked to many important biological phenomena. Researchers have recently begun to sequence bisulfite treated DNA to determine its pattern of methylation. However, sequencing reads from bisulfite-converted DNA can vary significantly from the reference genome because of incomplete bisulfite conversion, genome variation, sequencing errors, and poor quality bases. Therefore, it is often difficult to align reads to the correct locations in the reference genome. Furthermore, bisulfite sequencing experiments have the additional complexity of having to estimate the DNA methylation levels within the sample. RESULTS: Here, we present a highly accurate probabilistic algorithm, which is an extension of the Genomic Next-generation Universal MAPper to accommodate bisulfite sequencing data (GNUMAP-bs), that addresses the computational problems associated with aligning bisulfite sequencing data to a reference genome. GNUMAP-bs integrates uncertainty from read and mapping qualities to help resolve the difference between poor quality bases and the ambiguity inherent in bisulfite conversion. We tested GNUMAP-bs and other commonly-used bisulfite alignment methods using both simulated and real bisulfite reads and found that GNUMAP-bs and other dynamic programming methods were more accurate than the more heuristic methods. CONCLUSIONS: The GNUMAP-bs aligner is a highly accurate alignment approach for processing the data from bisulfite sequencing experiments. The GNUMAP-bs algorithm is freely available for download at: http://dna.cs.byu.edu/gnumap. The software runs on multiple threads and multiple processors to increase the alignment speed.


Assuntos
Alinhamento de Sequência/normas , Análise de Sequência de DNA , Sulfitos/química , Algoritmos , Inteligência Artificial , Sequência de Bases , Simulação por Computador , Metilação de DNA , Genoma Humano , Humanos , Probabilidade , Software , Sulfitos/normas
8.
F S Sci ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065301

RESUMO

OBJECTIVE: To perform a comprehensive assessment of protamine (P) isoforms and modifications in human sperm with the aim of identifying how P modifications and isoforms are altered in men with reduced sperm motility and low sperm count. DESIGN: Cross-sectional. SETTING: Academic medical center. PATIENTS: A total of 18 men with prior reported pregnancy and normozoospermia (normal sperm), 14 men from couples with infertility and asthenozoospermia (reduced sperm motility), and 24 men from couples with infertility and oligoasthenoteratozoospermia (low sperm count and motility and abnormal sperm morphology). INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): Proteomic assessment using both top-down and bottom-up liquid chromatography mass spectrometry (MS) analysis. RESULTS: A total of 13 posttranslational modifications were identified on P1 and P2 using bottom-up MS, including both phosphorylation and methylation. Top-down MS revealed an unmodified and phosphorylated isoform of P1 and the 3 major isoforms of P2, HP2, HP3, and HP4. Protamine 1 phosphorylation was overall higher in men with male factor infertility compared with those with normal semen analysis (40.5% vs. 32.6). There was no difference in P posttranslational modifications or isoforms of P2 in men with normal vs. abnormal fertility. CONCLUSION: Human protamines bear a number of posttranslational modifications, with alterations in P1 phosphorylation noted in the setting of male factor infertility.

9.
Nat Struct Mol Biol ; 30(8): 1077-1091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460896

RESUMO

Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.


Assuntos
Aminoácidos , Aptidão Genética , Animais , Masculino , Camundongos , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Filogenia , Protaminas/química , Protaminas/genética , Protaminas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides
10.
Front Endocrinol (Lausanne) ; 13: 895502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813619

RESUMO

Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.


Assuntos
Histonas , Protaminas , Cromatina/metabolismo , Histonas/genética , Humanos , Masculino , Protaminas/genética , Protaminas/metabolismo , Sêmen , Espermatozoides/metabolismo
11.
Hum Reprod ; 26(9): 2558-69, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685136

RESUMO

BACKGROUND: The sperm chromatin of fertile men retains a small number of nucleosomes that are enriched at developmental gene promoters and imprinted gene loci. This unique chromatin packaging at certain gene promoters provides these genomic loci the ability to convey instructive epigenetic information to the zygote, potentially expanding the role and significance of the sperm epigenome in embryogenesis. We hypothesize that changes in chromatin packaging may be associated with poor reproductive outcome. METHODS: Seven patients with reproductive dysfunction were recruited: three had unexplained poor embryogenesis during IVF and four were diagnosed with male infertility and previously shown to have altered protamination. Genome-wide analysis of the location of histones and histone modifications was analyzed by isolation and purification of DNA bound to histones and protamines. The histone-bound fraction of DNA was analyzed using high-throughput sequencing, both initially and following chromatin immunoprecipitation. The protamine-bound fraction was hybridized to agilent arrays. DNA methylation was examined using bisulfite sequencing. RESULTS: Unlike fertile men, five of seven infertile men had non-programmatic (randomly distributed) histone retention genome-wide. Interestingly, in contrast to the total histone pool, the localization of H3 Lysine 4 methylation (H3K4me) or H3 Lysine 27 methylation (H3K27me) was highly similar in the gametes of infertile men compared with fertile men. However, there was a reduction in the amount of H3K4me or H3K27me retained at developmental transcription factors and certain imprinted genes. Finally, the methylation status of candidate developmental promoters and imprinted loci were altered in a subset of the infertile men. CONCLUSIONS: This initial genome-wide analysis of epigenetic markings in the sperm of infertile men demonstrates differences in composition and epigenetic markings compared with fertile men, especially at certain imprinted and developmental loci. Although no single locus displays a complete change in chromatin packaging or DNA modification, the data suggest that moderate changes throughout the genome exist and may have a cumulative detrimental effect on fecundity.


Assuntos
Epigênese Genética , Genes Controladores do Desenvolvimento , Genoma Humano , Impressão Genômica , Infertilidade Masculina/genética , Espermatozoides/metabolismo , Adulto , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Desenvolvimento Embrionário/genética , Epigenômica , Fertilização in vitro , Histonas , Humanos , Masculino , Nucleossomos/metabolismo , Regiões Promotoras Genéticas
12.
Nat Commun ; 12(1): 3876, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162856

RESUMO

Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Homeostase/genética , Células-Tronco Mesenquimais/metabolismo , Regeneração/genética , Testículo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Célula Única/métodos , Testículo/citologia
13.
Mol Hum Reprod ; 16(1): 37-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906823

RESUMO

Along with many of the genome-wide transitions in chromatin composition throughout spermatogenesis, epigenetic modifications on histone tails and DNA are continuously modified to ensure stage specific gene expression in the maturing spermatid. Recent findings have suggested that the repertoire of epigenetic modifications in the mature sperm may have a potential role in the developing embryo and alterations in the epigenetic profile have been associated with infertility. These changes include DNA demethylation and the retention of modified histones at important developmental, signaling and micro-RNA genes, which resemble the epigenetic state of an embryonic stem cell. This review assesses the significance of epigenetic changes during spermatogenesis, and provides insight on recent associations made between altered epigenetic profiles in the mature sperm and its relationship to infertility.


Assuntos
Desenvolvimento Embrionário/genética , Epigênese Genética/genética , Espermatozoides/metabolismo , Animais , Histonas/metabolismo , Humanos , Masculino , Modelos Biológicos , Espermatogênese/genética , Espermatogênese/fisiologia
14.
Mol Biol Cell ; 31(25): 2841-2862, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026960

RESUMO

Androgen receptor (AR) signaling in Sertoli cells is known to be important for germ-cell progression through meiosis, but the extent to which androgens indirectly regulate specific meiotic stages is not known. Here, we combine synchronization of spermatogenesis, cytological analyses and single-cell RNAseq (scRNAseq) in the Sertoli-cell androgen receptor knockout (SCARKO) mutant and control mice, and demonstrate that SCARKO mutant spermatocytes exhibited normal expression and localization of key protein markers of meiotic prophase events, indicating that initiation of meiotic prophase is not androgen dependent. However, spermatocytes from SCARKO testes failed to acquire competence for the meiotic division phase. ScRNAseq analysis of wild-type and SCARKO mutant testes revealed a molecular transcriptomic block in an early meiotic prophase state (leptotene/zygotene) in mutant germ cells, and identified several misregulated genes in SCARKO Sertoli cells, many of which have been previously implicated in male infertility. Together, our coordinated cytological and scRNAseq analyses identified germ-cell intrinsic and extrinsic genes responsive to Sertoli-cell androgen signaling that promotes cellular states permissive for the meiotic division phase.


Assuntos
Androgênios/metabolismo , Meiose/fisiologia , Receptores Androgênicos/metabolismo , Células de Sertoli/metabolismo , Androgênios/fisiologia , Animais , Masculino , Prófase Meiótica I , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prófase , Receptores Androgênicos/fisiologia , Análise de Sequência de RNA/métodos , Células de Sertoli/fisiologia , Transdução de Sinais , Análise de Célula Única/métodos , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo
15.
Dev Cell ; 54(4): 529-547.e12, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32504559

RESUMO

Spermatogenesis is a highly regulated process that produces sperm to transmit genetic information to the next generation. Although extensively studied in mice, our current understanding of primate spermatogenesis is limited to populations defined by state-specific markers from rodent data. As between-species differences have been reported in the duration and differentiation hierarchy of this process, it remains unclear how molecular markers and cell states are conserved or have diverged from mice to man. To address this challenge, we employ single-cell RNA sequencing to identify transcriptional signatures of major germ and somatic cell types of the testes in human, macaque, and mice. This approach reveals similarities and differences in expression throughout spermatogenesis, including the stem/progenitor pool of spermatogonia, markers of differentiation, potential regulators of meiosis, RNA turnover during spermatid differentiation, and germ cell-soma communication. These datasets provide a rich foundation for future targeted mechanistic studies of primate germ cell development and in vitro gametogenesis.


Assuntos
Diferenciação Celular/genética , Análise de Célula Única , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Macaca/genética , Macaca/crescimento & desenvolvimento , Masculino , Meiose/genética , Camundongos , Análise de Sequência de RNA , Espermatogônias/citologia , Testículo/metabolismo
16.
Curr Top Dev Biol ; 132: 257-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30797511

RESUMO

Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fertilização/genética , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Animais , Diferenciação Celular/genética , Feminino , Humanos , Masculino
17.
Cell Rep ; 26(6): 1501-1517.e4, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726734

RESUMO

Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of neonatal testes reveals several cell subsets, including cell populations with characteristics of primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker genes. We identify protein markers for the most primitive SPG state, allowing us to purify this likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in both neonatal and adult testes and trace their developmental trajectories. Our data provide a blueprint of the developing human male germline and supporting somatic cells. The PGC-like and SSC markers are candidates to be used for SSC therapy to treat infertility.


Assuntos
Análise de Célula Única/métodos , Testículo/citologia , Adulto , Diferenciação Celular , Células Cultivadas , Humanos , Recém-Nascido , Masculino , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/crescimento & desenvolvimento
18.
Dev Cell ; 46(5): 651-667.e10, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146481

RESUMO

Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células de Sertoli/citologia , Análise de Célula Única/métodos , Espermatogênese , Testículo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Masculino , Camundongos , Células de Sertoli/metabolismo , Testículo/metabolismo
19.
Cell Stem Cell ; 15(2): 239-53, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24835570

RESUMO

Adult germline stem cells (AGSCs) self-renew (Thy1(+) enriched) or commit to gametogenesis (Kit(+) enriched). To better understand how chromatin regulates AGSC biology and gametogenesis, we derived stage-specific high-resolution profiles of DNA methylation, 5hmC, histone modifications/variants, and RNA-seq in AGSCs and during spermatogenesis. First, we define striking signaling and transcriptional differences between AGSC types, involving key self-renewal and proliferation pathways. Second, key pluripotency factors (e.g., Nanog) are silent in AGSCs and bear particular chromatin/DNAme attributes that may "poise" them for reactivation after fertilization. Third, AGSCs display chromatin "poising/bivalency" of enhancers and promoters for embryonic transcription factors. Remarkably, gametogenesis occurs without significant changes in DNAme and instead involves transcription of DNA-methylated promoters bearing high RNAPol2, H3K9ac, H3K4me3, low CG content, and (often) 5hmC. Furthermore, key findings were confirmed in human sperm. Here, we reveal AGSC signaling asymmetries and chromatin/DNAme strategies in AGSCs to poise key transcription factors and to activate DNA-methylated promoters during gametogenesis.


Assuntos
Células-Tronco Adultas/citologia , Cromatina/fisiologia , Espermatogênese/fisiologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Separação Celular , Cromatina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/citologia , Elementos Facilitadores Genéticos , Citometria de Fluxo , Perfilação da Expressão Gênica , Genômica , Histonas/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Transdução de Sinais , Espermatozoides/metabolismo , Fatores de Tempo , Transcrição Gênica
20.
Curr Opin Cell Biol ; 25(2): 177-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402869

RESUMO

The importance and role of the cellular epigenome in cell fating and development have been studied for decades. The epigenome encompasses a range of attributes including DNA methylation, histone modifications, and chromatin remodelers; together these components define the cellular transcriptome, identity, and function. The cellular epigenome is dynamic in response to environmental signals, modifiable during normal cell differentiation and is heritable in daughter cells. This plasticity, however, poses a risk for misregulation and may underlie a number of hereditary disorders, development defects, and cancer. Although the first epigenetic change described in cancer was gene hypomethylation [Holliday R, Jeggo PA: Mechanisms for changing gene expression and their possible relationship to carcinogenesis.Cancer Surv 1985, 4:557-581; Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature 1983, 301:89-92], we know that cancers not only display global hypomethylation, but also, site-specific gene hypermethylation in addition to changes in chromatin modifications. Mechanisms explaining the sometimes paradoxical epigenetic changes observed in cancer, their contributions to tumor initiation and progression and how epigenetics relate to genetic events are poorly understood. In this review we will briefly discuss recent findings on the epigenomic states observed in colon cancer, in particular, how perturbations to the genome and epigenome together may contribute to initiation and progression of colon cancer.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Epigênese Genética , Mucosa Intestinal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Neoplasias do Colo/metabolismo , Metilação de DNA , Progressão da Doença , Epigenômica , Genes APC , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Intestinos/citologia , Intestinos/patologia , Oncogenes , Regeneração , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA