Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 101(18): 6993-7006, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28766033

RESUMO

The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cinnamomum zeylanicum/química , Fluconazol/farmacologia , Óleos Voláteis/farmacologia , Pelargonium/química , Óleos de Plantas/farmacologia , Antifúngicos/química , Sinergismo Farmacológico , Ergosterol/análise , Óleos Voláteis/química , Óleos de Plantas/química
2.
BMC Microbiol ; 10: 192, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20633304

RESUMO

BACKGROUND: Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. RESULTS: The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the beta-1,2-cyclic glucan from R. tropici CIAT 899 was co-extracted with the cytoplasmic compatible solutes and its chemical structure was determined. CONCLUSIONS: The soil bacteria analyzed in this work accumulated mainly disaccharides in response to NaCl stress. We could not find a direct correlation between the trehalose content of the rhizobial strains and their osmotolerance, suggesting that additional osmoadaptive mechanism should be operating in the most NaCl-tolerant strain R. tropici CIAT 899.


Assuntos
Compostos Orgânicos/metabolismo , Phaseolus/microbiologia , Rhizobium/isolamento & purificação , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Dados de Sequência Molecular , Filogenia , Rhizobium/classificação , Rhizobium/genética , Cloreto de Sódio/metabolismo , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA