RESUMO
Cell-free DNA (cfDNA) is a widely used noninvasive biomarker for diagnosis and prognosis of multiple disease states. Emerging evidence suggests that cfDNA might not just be passive waste products of cell death but could have a physiological and pathological function in inflammation and autoimmunity. The balance of cfDNA generation and clearance may thus be vital in health and disease. In particular, plasma nuclease activity has been linked to multiple pathologies including cancer and systemic lupus erythematosus (SLE) and associated with profound changes in the nonrandom fragmentation of cfDNA. Lastly, in this review, we explore the effects of DNA fragmentation factor B (DFFB), DNASE1L3, and DNASE1 on cfDNA levels and their fragmentomic profiles, and what these recent insights reveal about the biology of cfDNA.
Assuntos
Ácidos Nucleicos Livres/genética , Desoxirribonuclease I/genética , Desoxirribonucleases/genética , Endodesoxirribonucleases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Autoimunidade/genética , Ácidos Nucleicos Livres/sangue , Fragmentação do DNA , Desoxirribonuclease I/sangue , Desoxirribonucleases/sangue , Endodesoxirribonucleases/sangue , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Proteínas de Ligação a Poli-ADP-Ribose/sangueRESUMO
The effects of DNASE1L3 or DNASE1 deficiency on cell-free DNA (cfDNA) methylation were explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wild-type cfDNA, cfDNA in DNASE1L3-deficient mice was significantly hypomethylated, while cfDNA in DNASE1-deficient mice was hypermethylated. The cfDNA hypomethylation in DNASE1L3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in DNASE1-deficient mice, demonstrating the preference of DNASE1 to cleave in hypomethylated OCRs and CGIs. We also observed a substantial decrease of fragment ends at methylated CpGs in the absence of DNASE1L3, thereby demonstrating that DNASE1L3 prefers to cleave at methylated CpGs. Furthermore, we found that methylation levels of cfDNA varied by fragment size in a periodic pattern, with cfDNA of specific sizes being more hypomethylated and enriched for OCRs and CGIs. These findings were confirmed in DNASE1L3-deficient human cfDNA. Thus, we have found that nuclease-mediated cfDNA fragmentation markedly affects cfDNA methylation level on a genome-wide scale. This work provides a foundational understanding of the relationship between methylation, nuclease biology, and cfDNA fragmentation.
Assuntos
Ácidos Nucleicos Livres , Fragmentação do DNA , Endodesoxirribonucleases , Animais , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Cromatina , Ilhas de CpG/genética , Metilação de DNA , Endodesoxirribonucleases/genética , Humanos , CamundongosRESUMO
Cell-free DNA (cf.DNA) is a powerful noninvasive biomarker for cancer and prenatal testing, and it circulates in plasma as short fragments. To elucidate the biology of cf.DNA fragmentation, we explored the roles of deoxyribonuclease 1 (DNASE1), deoxyribonuclease 1 like 3 (DNASE1L3), and DNA fragmentation factor subunit beta (DFFB) with mice deficient in each of these nucleases. By analyzing the ends of cf.DNA fragments in each type of nuclease-deficient mice with those in wild-type mice, we show that each nuclease has a specific cutting preference that reveals the stepwise process of cf.DNA fragmentation. Essentially, we demonstrate that cf.DNA is generated first intracellularly with DFFB, intracellular DNASE1L3, and other nucleases. Then, cf.DNA fragmentation continues extracellularly with circulating DNASE1L3 and DNASE1. With the use of heparin to disrupt the nucleosomal structure, we also show that the 10 bp periodicity originates from the cutting of DNA within an intact nucleosomal structure. Altogether, this work establishes a model of cf.DNA fragmentation.
Assuntos
Ácidos Nucleicos Livres/metabolismo , Cromatina/metabolismo , Fragmentação do DNA , Desoxirribonuclease I/fisiologia , Desoxirribonucleases/fisiologia , Endodesoxirribonucleases/fisiologia , Nucleossomos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Animais , Ácidos Nucleicos Livres/genética , Cromatina/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Nucleossomos/genéticaRESUMO
Plasma DNA fragmentomics is an emerging area in cell-free DNA diagnostics and research. In murine models, it has been shown that the extracellular DNase, DNASE1L3, plays a role in the fragmentation of plasma DNA. In humans, DNASE1L3 deficiency causes familial monogenic systemic lupus erythematosus with childhood onset and anti-dsDNA reactivity. In this study, we found that human patients with DNASE1L3 disease-associated gene variations showed aberrations in size and a reduction of a "CC" end motif of plasma DNA. Furthermore, we demonstrated that DNA from DNASE1L3-digested cell nuclei showed a median length of 153 bp with CC motif frequencies resembling plasma DNA from healthy individuals. Adeno-associated virus-based transduction of Dnase1l3 into Dnase1l3-deficient mice restored the end motif profiles to those seen in the plasma DNA of wild-type mice. Our findings demonstrate that DNASE1L3 is an important player in the fragmentation of plasma DNA, which appears to act in a cell-extrinsic manner to regulate plasma DNA size and motif frequency.
Assuntos
DNA/genética , Endodesoxirribonucleases/genética , Lúpus Eritematoso Sistêmico/genética , Mutação , Animais , Estudos de Casos e Controles , DNA/sangue , Fragmentação do DNA , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/metabolismo , Terapia Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Transgênicos , Especificidade por Substrato , Transdução GenéticaRESUMO
Single-stranded ends of double-stranded DNA (jagged ends) are more abundant in urinary DNA than in plasma DNA. However, the lengths of jagged ends in urinary DNA remained undetermined, as a previous method used for urinary DNA jagged end sequencing analysis (Jag-seq) relied on unmethylation at CpG sites, limiting the resolution. Here, we performed high-resolution Jag-seq analysis using methylation at non-CpG cytosine sites, allowing determination of exact length of jagged ends. The urinary DNA bore longer jagged ends (~26-nt) than plasma DNA (~17-nt). The jagged end length distribution displayed 10-nt periodicities in urinary DNA, which were much less observable in plasma DNA. Amplitude of the 10-nt periodicities increased in patients with renal cell carcinoma. Heparin treatment of urine diminished the 10-nt periodicities. The urinary DNA jagged ends often extended into nucleosomal cores, suggesting potential interactions with histones. This study has thus advanced our knowledge of jagged ends in urine DNA.
RESUMO
Liquid biopsies that analyze cell-free DNA in blood plasma are used for noninvasive prenatal testing, oncology, and monitoring of organ transplant recipients. DNA molecules are released into the plasma from various bodily tissues. Physical and molecular features of cell-free DNA fragments and their distribution over the genome bear information about their tissues of origin. Moreover, patterns of DNA methylation of these molecules reflect those of their tissue sources. The nucleosomal organization and nuclease content of the tissue of origin affect the fragmentation profile of plasma DNA molecules, such as fragment size and end motifs. Besides double-stranded linear fragments, other topological forms of cell-free DNA also exist-namely circular and single-stranded molecules. Enhanced by these features, liquid biopsies hold promise for the noninvasive detection of tissue-specific pathologies with a range of clinical applications.