Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.825
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019149

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

2.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412127

RESUMO

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Baço/patologia , Replicação Viral , Macrófagos/patologia
3.
Nature ; 583(7818): 830-833, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380511

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pulmão/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Transgenes , Enzima de Conversão de Angiotensina 2 , Animais , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Brônquios/patologia , Brônquios/virologia , COVID-19 , Infecções por Coronavirus/imunologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/virologia , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Masculino , Camundongos , Camundongos Transgênicos , Pandemias , Pneumonia Viral/imunologia , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , SARS-CoV-2 , Replicação Viral , Redução de Peso
4.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983498

RESUMO

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Vesículas Extracelulares/metabolismo
5.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806818

RESUMO

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Assuntos
Claudinas , Células Endoteliais , Pulmão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Endotélio Vascular/patologia , Células Cultivadas , Permeabilidade Capilar , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/patologia , Citocinas/metabolismo
6.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763964

RESUMO

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Assuntos
Hormônio Foliculoestimulante , Células da Granulosa , Folículo Ovariano , Proteína Sequestossoma-1 , Ubiquitinação , Proteínas WT1 , Animais , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Feminino , Proteínas WT1/metabolismo , Proteínas WT1/genética , Camundongos , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Humanos , Camundongos Knockout
7.
Proc Natl Acad Sci U S A ; 119(29): e2201169119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858300

RESUMO

Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1ß. We show that nsp1ß is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1ß residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.


Assuntos
Fatores de Restrição Antivirais , DNA Helicases , Evasão da Resposta Imune , Proteínas de Ligação a Poli-ADP-Ribose , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Proteínas não Estruturais Virais , eIF-2 Quinase , Animais , Fatores de Restrição Antivirais/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/virologia , Suínos , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , eIF-2 Quinase/metabolismo
8.
Eur J Neurosci ; 60(1): 3677-3693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711280

RESUMO

Gastrodin, an anti-inflammatory herbal agent, is known to suppress microglia activation. Here, we investigated whether it would exert a similar effect in reactive astrocytes and whether it might act through the renin-angiotensin system (RAS) and sirtuin 3 (SIRT3). Angiotensinogen (ATO), angiotensin-converting enzyme (ACE), angiotensin II type 1 (AT1) and type 2 (AT2) receptor and SIRT3 expression was detected in TNC-1 astrocytes treated with BV-2 microglia conditioned medium (CM) with or without gastrodin and lipopolysaccharide (LPS) pre-treatment by RT-PCR, immunofluorescence and western blotting analysis. Expression of C3 (A1 astrocyte marker), S100A10 (A2 astrocyte marker), proinflammatory cytokines and neurotrophic factors was then evaluated. The results showed a significant increase of ATO, ACE, AT1, SIRT3, C3, proinflammatory cytokines and neurotrophic factors expression in TNC-1 astrocytes incubated in CM + LPS when compared with cells incubated in the CM, but AT2 and S100A10 expression was reduced. TNC-1 astrocytes responded vigorously to BV-2 CM treated with gastrodin + LPS as compared with the control. This was evident by the decreased expression of the abovementioned protein markers, except for AT2 and S100A10. Interestingly, SIRT3, IGF-1 and BDNF expression was enhanced, suggesting that gastrodin inhibited the expression of RAS and proinflammatory mediators but promoted the expression of neurotrophic factors. And gastrodin regulated the phenotypic changes of astrocytes through AT1. Additionally, azilsartan (a specific inhibitor of AT1) inhibited the expression of C3 and S100A10, which remained unaffected in gastrodin and azilsartan combination treatment. These findings provide evidence that gastrodin may have a therapeutic effect via regulating RAS-SIRT3.


Assuntos
Astrócitos , Álcoois Benzílicos , Glucosídeos , Microglia , Sistema Renina-Angiotensina , Sirtuína 3 , Glucosídeos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Álcoois Benzílicos/farmacologia , Camundongos , Sirtuína 3/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Mediadores da Inflamação/metabolismo , Citocinas/metabolismo , Linhagem Celular
9.
Anal Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975729

RESUMO

Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.

10.
Small ; 20(10): e2304814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875646

RESUMO

Owing to the limited electrochemical stability window of carbonate electrolytes, the initial formation of a solid electrolyte interphase and surface film on the negative and positive electrode surfaces by the decomposition of the electrolyte component is inevitable for the operation of lithium secondary batteries. The deposited film on the surface of the active material is vital for reducing further electrochemical side reactions at the surface; hence, the manipulation of this formation process is necessary for the appropriate operation of the assembled battery system. In this study, the thermal decomposition of LiPF6 salt is used as a surface passivation agent, which is autocatalytically formed during high-temperature storage. The thermally formed difluorophosphoric acid is subsequently oxidized on the partially charged high-Ni positive electrode surface, which improves the cycleability of lithium metal cells via phosphorus- and fluorine-based surface film formation. Moreover, the improvement in the high-temperature cycleability is demonstrated by controlling the formation process in the lithium-ion pouch cell with a short period of high-temperature storage before battery usage.

11.
J Virol ; 97(3): e0168922, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916907

RESUMO

Fast evolution in the field of the replicase nsp2 represents a most prominent feature of porcine reproductive and respiratory syndrome virus (PRRSV). Here, we determined its biological significance in viral pathogenesis by constructing interlineage chimeric mutants between the Chinese highly pathogenic PRRSV (HP-PRRSV) strain JXwn06 (lineage 8) and the low-virulent NADC30-like strain CHsx1401 (lineage 1). Replacement with nsp2 from JXwn06 was surprisingly lethal to the backbone virus CHsx1401, but combined substitution with the structural protein-coding region (SP) gave rise to viable virus CHsx1401-SPnsp2JX. Meanwhile, a derivative carrying only the SP region (CHsx1401-SPJX) served as a control. Subsequent animal experiments revealed that acquisition of SP alone (CHsx1401-SPJX) did not allow CHsx1401 to gain much virulence, but additional swapping of HP-PRRSV nsp2 (CHsx1401-SPnsp2JX) enabled CHsx1401 to acquire some properties of HP-PRRSV, exemplified by prolonged high fever, microscopic lung hemorrhage, and a significant increase in proinflammatory cytokines in the acute stage. Consistent with this was the transcriptomic analysis of persistently infected secondary lymphoid tissues that revealed a much stronger induction of host cellular immune responses in this group and identified several core immune genes (e.g., TLR4, IL-1ß, MPO, etc.) regulated by HP-PRRSV nsp2. Interestingly, immune activation status in the individual groups correlated well with the rate of viremia clearance and viral tissue load reduction. Overall, the above results suggest that the Chinese HP-PRRSV nsp2 is a critical virulence regulator and highlight the importance of nsp2 genetic variation in modulating PRRSV virulence and persistence via immune modulation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has been a major threat to the world swine industry. In the field, rapid genetic variations (e.g., deletion, mutation, recombination, etc.) within the nsp2 region present an intriguing conundrum to PRRSV biology and pathogenesis. By making chimeric mutants, here, we show that the Chinese highly pathogenic PRRSV (HP-PRRSV) nsp2 is a virulence factor and a much stronger inducer of host immune responses (e.g., inflammation) than its counterpart, currently epidemic, NADC30-like strains. Differences in the ability to modulate host immunity provide insight into the mechanisms of why NADC30-like strains and their derivatives are rising to be the dominant viruses, whereas the Chinese HP-PRRSV strains gradually give away center stage in the field. Our results have important implications in understanding PRRSV evolution, interlineage recombination, and persistence.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China/epidemiologia , Citocinas , Variação Genética , Genoma Viral , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Virulência/genética
12.
Mod Pathol ; 37(1): 100384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972928

RESUMO

Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.


Assuntos
Neoplasias , Humanos , Imuno-Histoquímica , Canadá , Anticorpos Monoclonais , Receptor trkA/genética , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética
13.
J Magn Reson Imaging ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38205712

RESUMO

BACKGROUND: Accurate evaluation of the axillary lymph node (ALN) status is needed for determining the treatment protocol for breast cancer (BC). The value of magnetic resonance imaging (MRI)-based tumor heterogeneity in assessing ALN metastasis in BC is unclear. PURPOSE: To assess the value of deep learning (DL)-derived kinetic heterogeneity parameters based on BC dynamic contrast-enhanced (DCE)-MRI to infer the ALN status. STUDY TYPE: Retrospective. SUBJECTS: 1256/539/153/115 patients in the training cohort, internal validation cohort, and external validation cohorts I and II, respectively. FIELD STRENGTH/SEQUENCE: 1.5 T/3.0 T, non-contrast T1-weighted spin-echo sequence imaging (T1WI), DCE-T1WI, and diffusion-weighted imaging. ASSESSMENT: Clinical pathological and MRI semantic features were obtained by reviewing histopathology and MRI reports. The segmentation of the tumor lesion on the first phase of T1WI DCE-MRI images was applied to other phases after registration. A DL architecture termed convolutional recurrent neural network (ConvRNN) was developed to generate the KHimage (kinetic heterogeneity of DCE-MRI image) score that indicated the ALN status in patients with BC. The model was trained and optimized on training and internal validation cohorts, tested on two external validation cohorts. We compared ConvRNN model with other 10 models and the subgroup analyses of tumor size, magnetic field strength, and molecular subtype were also evaluated. STATISTICAL TESTS: Chi-squared, Fisher's exact, Student's t, Mann-Whitney U tests, and receiver operating characteristics (ROC) analysis were performed. P < 0.05 was considered significant. RESULTS: The ConvRNN model achieved area under the curve (AUC) of 0.802 in the internal validation cohort and 0.785-0.806 in the external validation cohorts. The ConvRNN model could well evaluate the ALN status of the four molecular subtypes (AUC = 0.685-0.868). The patients with larger tumor sizes (>5 cm) were more susceptible to ALN metastasis with KHimage scores of 0.527-0.827. DATA CONCLUSION: A ConvRNN model outperformed traditional models for determining the ALN status in patients with BC. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

14.
J Pineal Res ; 76(1): e12914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753741

RESUMO

Osteomyelitis (OM), characterized by heterogeneity and complexity in treatment, has a high risk of infection recurrence which may cause limb disability. Management of chronic inactive osteomyelitis (CIOM) without typical inflammatory symptoms is a great challenge for orthopedic surgeons. On the basis of data analysis of 1091 OM cases, we reported that latent osteogenic decline in CIOM patients was the main cause of secondary surgery. Our research shows that impairment of osteoblasts capacity in CIOM patients is associated with ferroptosis of osteoblasts caused by internalization of Staphylococcus aureus. Further studies show that melatonin could alleviate ferroptosis of osteoblasts in infected states through Nox4/ROS/P38 axis and protect the osteogenic ability of CIOM patients. Knockout of NADPH oxidase 4 (Nox4) in vivo could effectively relieve ferroptosis of osteoblasts in the state of infection and promote osteogenesis. Through a large number of clinical data analyses combined with molecular experiments, this study clarified that occult osteogenic disorders in CIOM patients were related to ferroptosis of osteoblasts. We revealed that melatonin might be a potential therapeutic drug for CIOM patients and provided a new insight for the treatment of OM.


Assuntos
Melatonina , Osteomielite , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Osteoblastos , Osteogênese , Staphylococcus aureus , Osteomielite/tratamento farmacológico
15.
Nanotechnology ; 35(33)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759635

RESUMO

The use of two-dimensional materials and van der Waals heterostructures holds great potential for improving the performance of memristors Here, we present SnS2/MoTe2heterostructure synaptic transistors. Benefiting from the ultra-low dark current of the heterojunction, the power consumption of the synapse is only 19pJ per switching under 0.1 V bias, comparable to that of biological synapses. The synaptic device based on the SnS2/MoTe2demonstrates various synaptic functionalities, including short-term plasticity, long-term plasticity, and paired-pulse facilitation. In particular, the synaptic weight of the excitatory postsynaptic current can reach 109.8%. In addition, the controllability of the long-term potentiation and long-term depression are discussed. The dynamic range (Gmax/Gmin) and the symmetricity values of the synaptic devices are approximately 16.22 and 6.37, and the non-linearity is 1.79. Our study provides the possibility for the application of 2D material synaptic devices in the field of low-power information storage.

16.
J Pept Sci ; 30(7): e3595, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494339

RESUMO

The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.


Assuntos
Antibacterianos , Hidrogéis , Peptídeos , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Hemorragia/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
17.
Acta Pharmacol Sin ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740904

RESUMO

The circadian clock is the inner rhythm of life activities and is controlled by a self-sustained and endogenous molecular clock, which maintains a ~ 24 h internal oscillation. As the core element of the circadian clock, BMAL1 is susceptible to degradation through the ubiquitin-proteasome system (UPS). Nevertheless, scant information is available regarding the UPS enzymes that intricately modulate both the stability and transcriptional activity of BMAL1, affecting the cellular circadian rhythm. In this work, we identify and validate UBR5 as a new E3 ubiquitin ligase that interacts with BMAL1 by using affinity purification, mass spectrometry, and biochemical experiments. UBR5 overexpression induced BMAL1 ubiquitination, leading to diminished stability and reduced protein level of BMAL1, thereby attenuating its transcriptional activity. Consistent with this, UBR5 knockdown increases the BMAL1 protein. Domain mapping discloses that the C-terminus of BMAL1 interacts with the N-terminal domains of UBR5. Similarly, cell-line-based experiments discover that HYD, the UBR5 homolog in Drosophila, could interact with and downregulate CYCLE, the BMAL1 homolog in Drosophila. PER2-luciferase bioluminescence real-time reporting assay in a mammalian cell line and behavioral experiments in Drosophila reveal that UBR5 or hyd knockdown significantly reduces the period of the circadian clock. Therefore, our work discovers a new ubiquitin ligase UBR5 that regulates BMAL1 stability and circadian rhythm and elucidates the underlying molecular mechanism. This work provides an additional layer of complexity to the regulatory network of the circadian clock at the post-translational modification level, offering potential insights into the modulation of the dysregulated circadian rhythm.

18.
Appl Microbiol Biotechnol ; 108(1): 173, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267794

RESUMO

Pyroptosis is a newly discovered type of pro-inflammatory programmed cell death that plays a vital role in various processes such as inflammations, immune responses, and pathogen infections. As one of the main executioners of pyroptosis, gasdermin D (GSDMD) is a membrane pore-forming protein that typically exists in a self-inhibitory state. Once activated, GSDMD will be cleaved into an N-terminal fragment with pore-forming activity, becoming the key indicator of pyroptosis activation, and a C-terminal fragment. Although commercial antibodies against human and murine GSDMD proteins are currently available, their reactivity with porcine GSDMD (pGSDMD) is poor, which limits research on the biological functions of pGSDMD and pyroptosis in pigs in vivo and in vitro. Here, five monoclonal antibodies (mAbs) were prepared by immunizing BALB/c mice with procaryotically expressed full-length pGSDMD, all of which did not cross react with human and murine GSDMD proteins. Epitope mapping demonstrated that 15H6 recognizes amino acids (aa) at positions 28-34 of pGSDMD (LQTSDRF), 19H3 recognizes 257-260aa (PPQF), 23H10 and 27A10 recognize 78-82aa (GPFYF), and 25E2 recognizes 429-435aa (PPTLLGS). The affinity constant and isotype of 15H6, 19H3, 23H10, 27A10, and 25E2 mAbs were determined to be 1.32 × 10-9, 3.66 × 10-9, 9.04 × 10-9, 1.83 × 10-9, and 8.00 × 10-8 mol/L and IgG1/κ, IgG2a/κ, IgG2a/κ, IgG1/κ, and IgG1/κ, respectively. Heavy- and light-chain variable regions sequencing showed that the heavy-chain complementarity-determining region (CDR) sequences of all five mAbs are completely different, while the light-chain CDR sequences of the four mAbs that recognize the N-terminus of pGSDMD are identical. Our prepared mAbs provide valuable materials for studying pGSDMD function and pyroptosis. KEY POINTS: • A total of five mouse anti-pGSDMD mAbs were prepared, of which four recognize the N-terminus of pGSDMD and one recognize its C-terminus. • The main performance parameters of the five mAbs, including epitope, antibody titer, affinity constant, isotype, and heavy- and light-chain CDR, were characterized. • All five mAbs specifically recognize pGSDMD protein and do not cross react with human and murine GSDMD proteins.


Assuntos
Anticorpos Monoclonais , Gasderminas , Humanos , Suínos , Animais , Camundongos , Imunossupressores , Porinas , Imunoglobulina G , Camundongos Endogâmicos BALB C
19.
BMC Public Health ; 24(1): 50, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166986

RESUMO

BACKGROUND: There is an increasing awareness that diet-related inflammation may have an impact on the stroke. Herein, our goal was to decipher the association of dietary inflammatory index (DII) with stroke in the US general population. METHODS: We collected the cross-sectional data of 44,019 participants of the National Health and Nutrition Examination Survey (NHANES) 1999-2018. The association of DII with stroke was estimated using weighted multivariate logistic regression, with its nonlinearity being examined by restricted cubic spline (RCS) regression. The least absolute shrinkage and selection operator (LASSO) regression was applied for identifying key stroke-related dietary factors, which was then included in the establishment of a risk prediction nomogram model, with the receiver operating characteristic (ROC) curve being built to evaluate its discriminatory power for stroke. RESULTS: After confounder adjustment, the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for stroke across higher DII quartiles were 1.19 (0.94-1.54), 1.46 (1.16-1.84), and 1.87 (1.53-2.29) compared to the lowest quartile, respectively. The RCS curve showed a nonlinear and positive association between DII and stroke. The nomogram model based on key dietary factors identified by LASSO regression displayed a considerable predicative value for stroke, with an area under the curve (AUC) of 79.8% (78.2-80.1%). CONCLUSIONS: Our study determined a nonlinear and positive association between DII and stroke in the US general population. Given the intrinsic limitations of cross-sectional study design, it is necessary to conduct more research to ensure the causality of such association.


Assuntos
Dieta , Acidente Vascular Cerebral , Humanos , Inquéritos Nutricionais , Estudos Transversais , Dieta/efeitos adversos , Inflamação/epidemiologia , Acidente Vascular Cerebral/epidemiologia
20.
J Craniofac Surg ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738898

RESUMO

OBJECTIVES: This prospective cohort study aimed to describe the technique of mini endoscopic septoplasty for patients with a high localized nasal septum deviation in front of the middle turbinate and chronic sinusitis or nasal sinus fungus ball. Our primary objective was to investigate the indications and outcomes of this procedure, and the secondary objective was to compare it with regular endoscopic septoplasty. METHODS: Patients with chronic sinusitis or nasal sinus fungus ball and high localized nasal septum deviation underwent mini endoscopic septoplasty, while those with a broad deviation of the nasal septum underwent regular endoscopic septoplasty. The study evaluated the procedure duration, blood loss, and complications associated with both methods. All patients were followed up for 3 months. RESULTS: Thirty patients underwent mini endoscopic septoplasty; another 30 underwent regular endoscopic septoplasty. Mini endoscopic septoplasty demonstrated a significantly shorter procedure duration and lower blood loss than regular endoscopic septoplasty. Neither group experienced operative complications, such as nasal septum perforation or hematoma. CONCLUSION: Mini endoscopic septoplasty is a safe, time-efficient, and effective technique indicated for highly localized nasal septum deviations in patients with chronic sinusitis or nasal sinus fungus ball. This procedure offers advantages in terms of the surgical approach and postoperative debridement. Future research could explore the broader clinical implications of these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA