Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Microbiol ; 26(5): e16622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757466

RESUMO

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Assuntos
Bactérias , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Rios/microbiologia , Rios/química , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução , Filogeografia , Filogenia , Microbiota
2.
Environ Sci Technol ; 58(26): 11625-11636, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38848335

RESUMO

Dissolved organic matter (DOM) exists widely in natural water, which inevitably influences microplastic (MP) photoaging. Nevertheless, the impacts of DOM fractions with diverse molecular structures on MP photoaging remain to be elucidated. This study explored the photoaging mechanisms of polylactic acid (PLA)-MPs and polystyrene (PS)-MPs in the presence of DOM and its subfractions (hydrophobic acid (HPOA), hydrophobic neutral (HPON), and hydrophilic (HPI)). Across DOM fractions, HPI exhibited the highest electron accepting capacity (23 µmol e- (mg C)-1) due to its abundant tannin-like species (36.8%) with carboxylic groups, which facilitated more reactive oxygen species generation (particularly hydroxyl radical), leading to the strongest photoaging rate of two MPs by HPI. However, the sequences of bond cleavage during photoaging of each MPs were not clearly shifted as revealed by two-dimensional infrared correlation spectra. Inconspicuous effects on the extent of PS- and PLA-MPs photoaging were observed for HPOA and HPON, respectively. This was mainly ascribed to the occurrence of inhibitory mechanisms (e.g., light-shielding and quenching effect) counteracting the reactive oxygen species-promoting effects. The findings identified the HPI fraction of DOM for promoting PS- and PLA-MPs photoaging rate and first constructed a link among DOM molecular structures, redox properties, and effects on MP photoaging.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microplásticos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Poliestirenos/química , Poliésteres/química , Poluentes Químicos da Água/química
3.
Appl Environ Microbiol ; 88(12): e0059722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638840

RESUMO

Bacterial biodiversity is tightly correlated with ecological functions of natural systems, and bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning. However, the biogeographic pattern and elevational differentiation of sedimentary bacterial diversity have rarely been studied in cross-river systems at a continental scale. This study analyzed the biogeographic patterns and elevational differentiations of the entire, abundant, and rare bacterial (sub)communities as well as the underlying mechanisms across nine rivers that span distinct geographic regions and large elevational gradients in China. We found that bacterial rare and abundant subcommunities shared similar biogeographic patterns and both demonstrated strong distance-decay relationships, despite their distinct community compositions. However, both null model and variation partitioning analysis results showed that while environmental selection governed rare subcommunity assemblies (contribution: 51.9%), dispersal limitation (62.7%) controlled the assembly of abundant subcommunities. The disparity was associated with the broader threshold width of abundant taxa to water temperature and pH variations than rare taxa. Elevation-induced bacterial composition variations were more evident than latitude-induced ones. Some specific operational taxonomic units (OTUs), representing 16.4% of the total sequences, much preferentially and even exclusively lived in high-elevation or low-elevation habitats and demonstrated some adaptations to local conditions. Greater positive: negative link ratios in bacterial co-occurrence networks of low elevations than high elevations (P < 0.05) partly resulted from their harboring higher organic carbon: nitrogen ratios. Together, this study draws a biogeographic picture of sedimentary bacterial communities in a continental-scale riverine system and highlights the importance of incorporating elevation-associated patterns of microbial diversity into riverine microbial ecology studies. IMPORTANCE Bacterial diversity is tightly correlated with the nutrient cycling of river systems. However, previous studies on bacterial diversity are mainly constrained to one single river system, although microbial biogeography and its drivers exhibit strong spatial scale dependence. Moreover, elevational differentiations of bacterial communities across river systems have also rarely been studied. Bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning, and they share similar biogeographic patterns in some environments but not in others. Therefore, we explored the biogeography of the entire, abundant, and rare (sub)communities in nine rivers that cover a wide space range and large elevational gradient in China. Our results revealed that bacterial rare and abundant subcommunities shared similar biogeographic patterns but their assembly mechanisms were much different in these rivers. Moreover, bacterial communities showed evident differentiations between high elevations and low elevations. These findings will facilitate a better understanding of bacterial diversity features in river systems.


Assuntos
Ecossistema , Rios , Bactérias/genética , Biodiversidade , China , Rios/microbiologia
4.
Environ Sci Technol ; 54(5): 2715-2725, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32003984

RESUMO

The benefits and disadvantages of hydrochar incorporation into soil have been heavily researched. However, the effect of hydrochar application on the soil microbial communities and the molecular structure of native soil organic carbon (SOC) has not been thoroughly elucidated. This study conducted an incubation experiment at 25 °C for 135 days using a soil column with 0.5 and 1.5% hydrochar-amended paddy soil to explore the interconnections between changes in soil properties and microbial communities and shifts in native SOC structure using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and NMR after hydrochar application. Hydrochar addition decreased the labile SOC fraction by 15.6-33.6% and increased the stable SOC fraction by 10.3-27.0%. These effects were significantly stronger for 1.5% hydrochar-treated soil. Additionally, hydrochar addition induced the native SOC with 1.0-3.0% more carbon and 6.0-13.0% higher molecular weight. The SOC in hydrochar-amended soil contained more aromatic compounds but fewer carbohydrates and lower polarity. This was resulted by a statistically significant reduction in Sphingobacterium, which was active in polycyclic aromatic hydrocarbon degradation, and an increase in Flavobacterium, Anaerolinea, Penicillium, and Acremonium, which were the efficient decomposers of labile SOC. These findings will help elucidate the potential influence of hydrochar on the carbon biogeochemical cycle in the soil.


Assuntos
Microbiota , Solo , Carbono , Estrutura Molecular , Microbiologia do Solo
5.
Environ Sci Technol ; 52(4): 1880-1888, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381852

RESUMO

Biochar-derived organic matter (BDOM) plays an important role in determining biochar's application potential in soil remediation. However, little is known about the physicochemical properties of BDOM and its sorption of hydrophobic organic compounds (HOCs). Humic acids (HAs) were extracted from oxidized biochars produced from plant straws and animal manures at 450 °C, and their sorption of phenanthrene, a representative of HOCs, was investigated. The organic carbon recovery of biochar-derived HAs (BDHAs) was 13.9-69.3%. The 13C NMR spectra of BDHAs mainly consisted of aromatic and carboxylic C, while those of soil-derived HAs (SDHAs) contained abundant signals in aliphatic region. BDHAs and SDHAs had comparable CO2 cumulative surface areas. BDHAs were found to exhibit higher phenanthrene sorption than SDHAs. After the removal of amorphous aromatic components, the logKoc values of BDHAs were significantly decreased, implying that amorphous aromatic C regulated phenanthrene sorption by BDHAs. In contrast, aliphatic moieties dominated phenanthrene sorption by SDHAs, as evidenced by the enhanced sorption after the removal of amorphous aromatics. This study clearly demonstrated the contrasting characteristics and sorption behaviors of BDHA and SDHA, indicating that biochar addition and subsequent weathering could greatly affect native organic matter properties and the fate of HOCs in biochar-amended soils.


Assuntos
Fenantrenos , Poluentes do Solo , Adsorção , Animais , Carvão Vegetal , Substâncias Húmicas , Solo
6.
Ecotoxicol Environ Saf ; 164: 226-233, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30118956

RESUMO

Source identification of trace metals in the water environment is important in understanding its environmental behavior and in the prevention and remediation of further pollution. Here, the regional geochemical baseline (RGB) and Pb isotopic ratios are combined to decipher the anthropogenic contribution rate, main anthropogenic source, and transport pathway of trace metals in sediments collected from the largest freshwater lake in northern China, Baiyangdian (BYD) Lake. The established RGB values of Cr, Ni, Cu, Zn, Cd, and Pb were 63.0, 27.8, 24.7, 46.1, 0.18, and 22.0 mg/kg, respectively, which were slightly different from the regional soil background values. Based on the RGB and actual concentrations of trace metals in the lake sediments, the calculated average anthropogenic contribution were lower than 20% except for Cd. Compared with the other trace metals, Cd was the element most impacted by anthropogenic input, which was mainly caused by the point source pollution in some sites. The risk assessment (geo-accumulation index and potential ecological risk) using the RGB as the regional background values showed that BYD sediments were uncontaminated by the trace metals, and at low ecological risk from the trace metals. The results of these two risk assessments further validated the assessment of the anthropogenic contribution by the RGB. In addition, Pb isotopic ratios result showed that coal combustion was the main potential source of anthropogenic Pb in the BYD sediments and atmospheric deposition was the main transport pathway. This study tried to combine the geochemical baseline and Pb isotopic composition to identify the anthropogenic input of trace metals in the sediments. It will provide a new insight into assessing the anthropogenic contributions, identifying the main anthropogenic sources, and transport pathways of trace metals in water environment.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Chumbo/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Medição de Risco
7.
Environ Sci Technol ; 51(5): 2635-2642, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28135084

RESUMO

Pyrogenic humic acid (HA) is released into the environment during the large-scale application of biochar. However, the biogeochemistry of pyrogenic organic matter (PyOM) fractions and their sorption of hydrophobic organic compounds (HOCs) are poorly understood in comparison with natural organic matter (NOM) fractions. HA and humin (HM) fractions isolated from soils and the oxidized biochars were characterized. Sorption of phenanthrene (PHE) by these fractions was also examined. The characterization results demonstrate that pyrogenic HAs are different from natural HAs, with the former having lower atomic H/C ratios, more abundant aromatic C, and higher concentrations of surface carboxylic groups. Compared with the fresh biochars, the Koc of PHE on their oxidized biochars, pyrogenic HA, and HM fractions were undiminished, which is encouraging for the use of biochar in soil remediation. The PyOM fractions exhibited stronger nonlinear sorption than the NOM fractions. In addition, the PyOM fractions had higher sorption capacity than the NOM fractions due to their low polar C content and high aryl C content. The results obtained from this work will shed new light on the impact of the addition of biochar on the biogeochemistry of soil organic matter and on the fate of HOCs in biochar-amended soil.


Assuntos
Substâncias Húmicas , Fenantrenos/química , Adsorção , Meio Ambiente , Compostos Orgânicos , Solo/química , Poluentes do Solo/química
8.
Ecotoxicol Environ Saf ; 144: 321-329, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28646737

RESUMO

The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206Pb/207Pb and 208Pb/207Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future.


Assuntos
Arsênio/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , China , Ecologia
9.
Environ Sci Technol ; 50(24): 13274-13282, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993069

RESUMO

This study investigated the sorption potential of hydrochars, produced from hydrothermally carbonizing livestock wastes, toward organic pollutants (OPs) with a wide range of hydrophobicity, and compared their sorption capacity with that of pyrochars obtained from conventional dry pyrolysis from the same feedstock. Results of SEM, Raman, and 13C NMR demonstrated that organic carbon (OC) of hydrochars mainly consisted of amorphous alkyl and aryl C. Hydrochars exhibited consistently higher log Koc of both nonpolar and polar OPs than pyrochars. This, combined with the significantly less energy required for the hydrothermal process, suggests that hydrothermal conversion of surplus livestock waste into value-added sorbents could be an alternative manure management strategy. Moreover, the hydrochars log Koc values were practically unchanged after the removal of amorphous aromatics, implying that amorphous aromatic C played a comparable role in the high sorption capacity of hydrochars compared to amorphous alkyl C. It was thus concluded that the dominant amorphous C associated with both alkyl and aryl moieties within hydrochars explained their high sorption capacity for OPs. This research not only indicates that animal-manure-derived hydrochars are promising sorbents for environmental applications but casts new light on mechanisms underlying the high sorption capacity of hydrochars for both nonpolar and polar OPs.


Assuntos
Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Adsorção
10.
Environ Sci Technol ; 48(19): 11227-34, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25184695

RESUMO

Natural sorbents including one humic acid (HA), humins (HMs), nonhydrolyzable carbons (NHCs), and engineered sorbents (biochars) were subject to bleaching to selectively remove a fraction of aromatic C. The structural properties and sorption isotherm data of phenanthrene (Phen) by original and bleached sorbents were obtained. Significant correlations between Phen Koc values by all sorbents and their organic carbon (OC)-normalized CO2 cumulative surface area (CO2-SA/OC) suggested that nanopore-filling mechanism could dominate Phen sorption. After bleaching, natural sorbents still contained large amounts of aromatic C, which are resistant to bleaching, suggesting that they are derived from condensed or nonbiodegradable organic matter (OM). After eliminating the effect of aromatic C remaining in the bleached samples, a general trend of increasing CO2-SA/OC of natural sorbents with increasing aliphaticity was observed, suggesting that nanopores of natural sorbents are partially derived from their aliphatic moieties. Conversely, positive relationships between CO2-SA/OC or Phen logKoc of engineered sorbents and their aromaticity indicated the aromatic structures of engineered sorbents primarily contribute to their nanopores and dominate their sorption of HOCs. Therefore, this study clearly demonstrated that the role of structure and microporosity in Phen sorption is dependent on the sources of sorbents.


Assuntos
Fenantrenos/química , Adsorção , Biodegradação Ambiental , Carbono/química , Dióxido de Carbono/química , Substâncias Húmicas/análise , Porosidade
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3415-8, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25881450

RESUMO

The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.


Assuntos
Carvão Vegetal/química , Espectroscopia de Ressonância Magnética , Espectroscopia Fotoeletrônica , Biomassa , Carbono/química , Temperatura Alta , Lignina/química , Oryza , Poaceae , Salix , Madeira
12.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952034

RESUMO

Nanotechnology has demonstrated significant potential to improve agricultural production and increase crop tolerance to abiotic stress including exposure to heavy metals. The present study investigated the mechanisms by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) alleviated cadmium (Cd)-induced toxicity to rice (Oryza sativa L.). AVGE Se NPs, chemically synthesized bare Se NPs, and NaSeO3 as an ionic control were applied to Cd-stressed rice seedlings via root exposure in both hydroponic and soil systems. Upon exposure to AVGE Se NPs at 15 mg Se/L, the fresh root biomass was significantly increased by 100.7% and 19.5% as compared to Cd control and conventional bare Se NPs. Transcriptional analyses highlighted that AVGE Se NPs activated stress signaling and defense related pathways, including glutathione metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction. Specifically, exposure to AVGE Se NPs upregulated the expression of genes associated with the gibberellic acid (GA) biosynthesis by and 4.79- and 3.29-fold as compared to the Cd-alone treatment and the untreated control, respectively. Importantly, AVGE Se NPs restored the composition of the endophyte community and recruit of beneficial species under Cd exposure; the relative abundance of Azospirillum was significantly increased in roots, shoots, and the rhizosphere soil by 0.73-, 4.58- and 0.37-fold, respectively, relative to the Cd-alone treatment. Collectively, these findings highlight the significant potential of AVGE Se NPs to enhance plant growth and to minimize the Cd-induced toxicity in rice and provide a promising nanoenabled strategy to enhance food safety upon crop cultivation in contaminated agricultural soils.

13.
Environ Int ; 185: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377723

RESUMO

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Assuntos
Chloroflexi , Microbiota , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Poliésteres , Bactérias , Polietileno
14.
Sci Total Environ ; 865: 161304, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592908

RESUMO

The speciation of arsenic (As) determines its biogeochemistry and ecotoxicity in soils. However, the approach to in situ monitor labile As (III) and As (V) in soils still requires more exploration. In this study, we developed a method for simultaneously obtaining in-situ data on labile As (III) and As (V) in soils using diffusive gradients in thin films (DGT) and high performance liquid chromatography-inductively coupled plasma mass spectrometry. The Fe2O3∙xH2O DGT sampler exhibited rapid and simultaneous accumulation of As (III) and As (V) in solutions within 90 min. The high efficiency of simultaneous elution of As (III) (~84 %) and As (V) (~97 %) was achieved using 0.8 % H3PO4 as eluent at 90 °C for 80 min. The method detection limits for As (III) and As (V) were 0.01 and 0.005 µg/L, respectively. This method was applied to reveal the labile As (III) and As (V) in soils in the water level fluctuation zones of the Three Gorges Reservoir, which is the largest reservoir in China. The concentrations of As (III) and As (V) measured by DGT varied with different sampling sites, ranging from 0.01 µg/L to 1.20 µg/L and from 0.01 µg/L to 0.26 µg/L, respectively. The labile As (III) exhibited the higher resupply rate from soil solid phase to soil solution than labile As (V). This study helps to achieve simultaneous in-situ quantification of labile As (III) and As (V) in soils, and will improve the understanding of As mobilization and ecotoxicity in soils.

15.
Environ Pollut ; 318: 120823, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481464

RESUMO

Microplastics (MPs, <5 mm) are enriched in paddy ecosystems as emerging environmental pollutants. Biochar (BC) is a controversial recalcitrant carbon product that poses potential environmental risks. The presence of these two exogenous organic substances has been demonstrated to have impacts on soil nitrogen cycling and crop production. However, the after-effects of MPs and BC on soil ammonia (NH3) volatilization and rice yield after field aging remain unexplored. In this study, two common MPs, including polyethylene (PE) and polyacrylonitrile (PAN), and BC were selected for rice growing season observations to study the impacts on soil NH3 volatilization and rice yield after field aging. The results showed that the reduction of cumulative soil NH3 losses by MPs was around 45% after one-year field aging, which was within the range of 40-57% in the previous rice season. Abatement of NH3 volatilization by MPs mainly occurred in basal fertilization and was related to floodwater pH. Besides, the reduction rate of NH3 volatilization by BC and MPs + BC was enhanced after field aging (63% and 50-57%) compared to that in the previous rice season (5% and 11-19%), with the abatement process occurring in the first supplementary fertilization. There was a significant positive correlation between cumulative NH3 volatilization and soil urease activity. Notably, field aging removed the positive effect of MPs and MPs + BC in reducing yield-scale NH3 losses in the previous rice season (∼62%). Furthermore, despite BC affecting rice yield insignificantly after field aging, the presence of MPs led to a significant 17-19% reduction in rice yield. Our findings reveal that differences in the after-effects of BC and MPs in field aging emerge, where the negative impacts of MPs on soil NH3 abatement and crop yield are progressively becoming apparent and should be taken into serious consideration.


Assuntos
Oryza , Solo , Solo/química , Oryza/química , Amônia/análise , Microplásticos , Plásticos , Volatilização , Ecossistema , Nitrogênio/análise , Fertilizantes/análise , Agricultura
16.
iScience ; 26(6): 106833, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250789

RESUMO

Photocatalytic microplastics (MPs) conversion into valuable products is a promising approach to alleviate MPs pollution in aquatic environments. Herein, we developed an amorphous alloy/photocatalyst composite (FeB/TiO2) that can successfully convert polystyrene (PS) MPs to clean H2 fuel and valuable organic compounds (92.3% particle size reduction of PS-MPs and 103.5 µmol H2 production in 12 h). FeB effectively enhanced the light-absorption and carrier separation of TiO2, thereby promoting more reactive oxygen species generation (especially ‧OH) and combination of photoelectrons with protons. The main products (e.g., benzaldehyde, benzoic acid, etc.) were identified. Additionally, the dominant PS-MPs photoconversion pathway was elucidated based on density functional theory calculations, by which the significant role of ‧OH was demonstrated in combination with radical quenching data. This study provides a prospective approach to mitigate MPs pollution in aquatic environments and reveals the synergistic mechanism governing the photocatalytic conversion of MPs and generation of H2 fuel.

17.
ACS Nano ; 17(14): 13672-13684, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440420

RESUMO

The use of nanotechnology to suppress crop diseases has attracted significant attention in agriculture. The present study investigated the antifungal mechanism by which aloe vera extract gel-biosynthesized (AVGE) selenium nanoparticles (Se NPs) suppressed Fusarium-induced wilt disease in lettuce (Lactuca sativa). AVGE Se NPs were synthesized by utilizing sodium selenite as a Se source and AVGE as a biocompatible capping and reducing agent. Over 21 d, 2.75% of total AVGE Se NPs was dissolved into Se ions, which was more than 8-fold greater than that of bare Se NPs (0.34%). Upon exposure to soil applied AVGE Se NPs at 50 mg/kg, fresh shoot biomass was significantly increased by 61.6 and 27.8% over the infected control and bare Se NPs, respectively. As compared to the infected control, the shoot levels of citrate, isocitrate, succinate, malate, and 2-oxo-glutarate were significantly upregulated by 0.5-3-fold as affected by both Se NPs. In addition, AVGE Se NPs significantly increased the shoot level of khelmarin D, a type of coumarin, by 4.40- and 0.71-fold over infected controls and bare Se NPs, respectively. Additionally, AVGE Se NPs showed greater upregulation of jasmonic acid and downregulation of abscisic acid content relative to bare Se NPs in diseased shoots. Moreover, the diversity of bacterial endophytes was significantly increased by AVGE Se NPs, with the values of Shannon index 40.2 and 9.16% greater over the infected control and bare Se NPs. Collectively, these findings highlight the significant potential of AVGE Se NPs as an effective and biocompatible strategy for nanoenabled sustainable crop protection.


Assuntos
Aloe , Nanopartículas , Selênio , Selênio/farmacologia , Lactuca/metabolismo , Aloe/metabolismo , Endófitos/metabolismo , Resistência à Doença
18.
Sci Total Environ ; 857(Pt 1): 159330, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228785

RESUMO

Tomato (Solanum lycopersicum) seedlings were exposed by foliar or root applications to Zn in different nanoscale and non-nanoscale forms (40 mg Zn/L) under hydroponic conditions for 15 days. Under foliar exposure, ZnO QDs significantly promoted tomato growth, while ZnO NPs and BPs had lower impacts. ZnO QDs increased fresh weight and plant height by 42.02 % and 21.10 % relative to the untreated controls, respectively. The ionic control (ZnSO4·7H2O, 176.6 mg/L) decreased fresh weight by 39.31 %. ZnO QDs also significantly increased the Chla/Chlb ratio, as well as carotenoids and protein content by 7.70 %, 8.90 % and 26.33 %, respectively, over the untreated controls, suggesting improvement in seedling photosynthetic performance. Antioxidant enzyme (POD, PPO and PAL) activities in ZnO QDs treated shoots were significantly decreased by 31.1 %, 17.8 % and 48.3 %, respectively, indicating no overt oxidative damage from exposure. Importantly, the translocation factor of Zn (TFZn) in the foliar exposure of the ZnO QDs treatment was 73.2 %, 97.1 % and 276.9 % greater than the NPs, BPs, and ionic controls, respectively. Overall, these findings clearly demonstrate that foliar spray of nanoscale nutrients at the appropriate concentration and size can significantly increase crop growth and be a sustainable approach to nano-enabled agriculture.


Assuntos
Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Solanum lycopersicum/metabolismo , Plântula/metabolismo , Hidroponia , Valor Nutritivo
19.
Bioresour Technol ; 381: 129130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149268

RESUMO

Due to the high biological toxicity, the concurrent elimination of lead (Pb (II)) and methylene blue (MB) has become a challenging problem. Therefore, a newly ß-cyclodextrin (ß-CD) modified magnetic alginate/biochar (ß-CD@MBCP) material was developed. Comprehensive characterizations proved the successful coating of ß-CD onto MBCP surface by microwave-aided fabrication. The ß-CD@MBCP achieved high-efficiency uptake for contaminants under a wide pH scope. In the dual system, Pb (II) elimination was facilitated with the presence of MB, due to the active sites provided by MB. In the presence of Pb (II), MB uptake was inhibited due to the electrostatic repulsion between positively charged MB and Pb (II). Electrostatic attraction and complexation contributed to capturing Pb (II), while π-π interactions, host-guest effect, and H-bonding were important in MB elimination. After four cycles, ß-CD@MBCP maintained comparatively good renewability. Findings demonstrated that ß-CD@MBCP could be an effective remediation material for Pb (II)/MB adsorption from aqueous environments.


Assuntos
Poluentes Químicos da Água , beta-Ciclodextrinas , Adsorção , Azul de Metileno/química , Chumbo , Carvão Vegetal/química , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética
20.
ACS Nano ; 17(20): 19724-19739, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812587

RESUMO

To investigate the mechanisms by which g-C3N4 alleviates metal(loid)-induced phytotoxicity, rice seedlings were exposed to 100 and 250 mg/kg graphitic carbon nitride (g-C3N4) with or without coexposure to 10 mg/kg Cd and 50 mg/kg As for 30 days. Treatment with 250 mg/kg g-C3N4 significantly increased shoot and root fresh weight by 22.4-29.9%, reduced Cd and As accumulations in rice tissues by 20.6-26.6%, and elevated the content of essential nutrients (e.g., K, S, Mg, Cu, and Zn) compared to untreated controls. High-throughput sequencing showed that g-C3N4 treatment increased the proportion of plant-growth-promoting endophytic bacteria, including Streptomyces, Saccharimonadales, and Thermosporothrix, by 0.5-3.30-fold; these groups are known to be important to plant nutrient assimilation, as well as metal(loid) resistance and bioremediation. In addition, the population of Deinococcus was decreased by 72.3%; this genus is known to induce biotransformation As(V) to As(III). Metabolomics analyses highlighted differentially expressed metabolites (DEMs) involved in the metabolism of tyrosine metabolism, pyrimidines, and purines, as well as phenylpropanoid biosynthesis related to Cd/As-induced phytotoxicity. In the phenylpropanoid biosynthesis pathway, the increased expression of 4-coumarate (1.13-fold) and sinapyl alcohol (1.26-fold) triggered by g-C3N4 coexposure with Cd or As played a critical role in promoting plant growth and enhancing rice resistance against metal(loid) stresses. Our findings demonstrate the potential of g-C3N4 to enhance plant growth and minimize the Cd/As-induced toxicity in rice and provide a promising nanoenabled strategy for remediating heavy metal(loid)-contaminated soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/toxicidade , Oryza/metabolismo , Arseniatos/metabolismo , Bactérias/metabolismo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA