Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 43(3): 1844-1858, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889887

RESUMO

RNA pseudouridine modification is particularly important in a variety of cellular biological and physiological processes. It plays a significant role in understanding RNA functions, RNA structure stabilization, translation processes, etc. To understand its functional mechanisms, it is necessary to accurately identify pseudouridine sites in RNA sequences. Although some computational methods have been proposed for the identification of pseudouridine sites, it is still a challenge to improve the identification accuracy and generalization ability. To address this challenge, a novel feature fusion predictor, named PsoEL-PseU, is proposed for the prediction of pseudouridine sites. Firstly, this study systematically and comprehensively explored different types of feature descriptors and determined six feature descriptors with various properties. To improve the feature representation ability, a binary particle swarm optimizer was used to capture the optimal feature subset for six feature descriptors. Secondly, six individual predictors were trained by using the six optimal feature subsets. Finally, to fuse the effects of all six features, six individual predictors were fused into an ensemble predictor by a parallel fusion strategy. Ten-fold cross-validation on three benchmark datasets indicated that the PsoEL-PseU predictor significantly outperformed the current state-of-the-art predictors. Additionally, the new predictor achieved better accuracy in the independent dataset evaluation-accuracy which is significantly higher than that of its existing counterparts-and the user-friendly webserver developed by the PsoEL-PseU predictor has been made freely accessible.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina , Pseudouridina/química , RNA/química , RNA/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA