Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Physiol ; 234(9): 15299-15307, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30786008

RESUMO

P300 and HDAC1 can be involved in the development of various liver diseases by regulating gene transcription. Endoplasmic reticulum stress (ERS) is one of the main pathways of apoptosis and is activated during inflammatory responses, but the roles of P300 and HDAC1 in ERS in antituberculosis drug-induced liver injury (ADLI) are not clear. This study confirms that isoniazid can change the states of P300 and HDAC1 in HL-7702 hepatocyte metabolism and induce ERS, causing hepatocyte injury and apoptosis. When combined with C646, however, P300 can be reduced. HL-7702 cells were flattened, and the cytoplasm became crinkled. To a certain extent, ERS was relieved, but hepatocytes suffered worse damage, and the rate of cell apoptosis markedly increased. When MS-275 was applied, HDAC1 level was increased, cell fusion appeared, and fluorescence intensity of endoplasmic reticulum was weakened. In addition, ERS was aggravated, but liver injury was relieved, and the apoptosis rate significantly decreased. Therefore, alteration of P300 and HDAC1 status and ERS are involved in ADLI, and changes in P300 and HDAC1 can regulate ERS and then affect cell damage.

2.
Nucleic Acids Res ; 43(2): 1147-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25564526

RESUMO

SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins with the common domain architecture of N-terminal SRA domain and C-terminal HNH nuclease domain, Sco5333 from Streptomyces coelicolor and Tbis1 from Thermobispora bispora. Both sco5333 and tbis1 cannot establish in methylated Escherichia coli hosts (dcm(+)), and this in vivo toxicity requires both SRA and HNH domain. Purified Sco5333 and Tbis1 displayed weak DNA cleavage activity in the presence of Mg(2+), Mn(2+) and Co(2+) and the cleavage activity was suppressed by Zn(2+). Both Sco5333 and Tbis1 bind to 5mC-containing DNA in all sequence contexts and have at least a preference of 100 folds in binding affinity for methylated DNA over non-methylated one. We suggest that linkage of methyl-specific SRA domain and weakly active HNH domain may represent a universal mechanism in competing alien methylated DNA but to maximum extent minimizing damage to its own chromosome.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Bactérias/metabolismo , Clivagem do DNA , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Actinomycetales , Proteínas de Bactérias/química , Cátions Bivalentes , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Ligação Proteica , Estrutura Terciária de Proteína , Streptomyces coelicolor
3.
Nucleic Acids Res ; 42(12): 8115-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24920828

RESUMO

5-Hydroxymethylcytosine (5hmC) is present in T-even phage and mammalian DNA as well as some nucleoside antibiotics, including mildiomycin and bacimethrin, during whose synthesis 5hmC is produced by the hydrolysis of 5-hydroxymethyl cytidine 5'-monophosphate (hmCMP) by an N-glycosidase MilB. Recently, the MilB-CMP complex structure revealed its substrate specificity for CMP over dCMP. However, hmCMP instead of CMP is the preferred substrate for MilB as supported by that its KM for CMP is ∼27-fold higher than that for hmCMP. Here, we determined the crystal structures of MilB and its catalytically inactive E103A mutant in complex with hmCMP. In the structure of the complex, Phe22 and Arg23 are positioned in a cage-like active site resembling the binding pocket for the flipped 5-methylcytosine (5mC) in eukaryotic 5mC-binding proteins. Van der Waals interaction between the benzene ring of Phe22 and the pyrimidine ring of hmCMP stabilizes its binding. Remarkably, upon hmCMP binding, the guanidinium group of Arg23 was bent ∼65° toward hmCMP to recognize its 5-hydroxymethyl group, inducing semi-closure of the cage-like pocket. Mutagenesis studies of Arg23 and bioinformatics analysis demonstrate that the positively charged Arg/Lys at this site is critical for the specific recognition of the 5-hydroxymethyl group of hmCMP.


Assuntos
Arginina/química , Monofosfato de Citidina/análogos & derivados , Glicosídeo Hidrolases/química , Domínio Catalítico , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Especificidade por Substrato
4.
Microorganisms ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930627

RESUMO

Toxin-antitoxin (TA) systems are the major mechanism for persister formation in Mycobacterium tuberculosis (Mtb). Previous studies found that HigBA2 (Rv2022c-Rv2021c), a predicted type II TA system of Mtb, could be activated for transcription in response to multiple stresses such as anti-tuberculosis drugs, nutrient starvation, endure hypoxia, acidic pH, etc. In this study, we determined the binding site of HigA2 (Rv2021c), which is located in the coding region of the upstream gene higB2 (Rv2022c), and the conserved recognition motif of HigA2 was characterized via oligonucleotide mutation. Eight binding sites of HigA2 were further found in the Mtb genome according to the conserved motif. RT-PCR showed that HigA2 can regulate the transcription level of all eight of these genes and three adjacent downstream genes. DNA pull-down experiments showed that twelve functional regulators sense external regulatory signals and may regulate the transcription of the HigBA2 system. Of these, Rv0903c, Rv0744c, Rv0474, Rv3124, Rv2603c, and Rv3583c may be involved in the regulation of external stress signals. In general, we identified the downstream target genes and possible upstream regulatory genes of HigA2, which paved the way for the illustration of the persistence establishment mechanism in Mtb.

5.
Mar Drugs ; 11(10): 4035-49, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24152563

RESUMO

The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.


Assuntos
Benzopiranos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Streptomyces/química , Streptomyces/genética , Benzopiranos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Pulmão/efeitos dos fármacos , Mutação/genética , Ribossomos/genética , Treonina/análogos & derivados , Treonina/química , Treonina/farmacologia
6.
Exp Ther Med ; 17(5): 4289-4293, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988801

RESUMO

The aim of the present study was to investigate the oxidative damage of liver mitochondria as an adverse effect of the anti-tuberculosis drug isonicotinic acid hydrazide (INH). The human hepatoblastoma cell line (HepG2) was exposed to INH at concentrations of 0, 1, 2 or 4 mg/ml for 24, 48, 72 or 96 h, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and 8-hydroxy-2-deoxyguanosine (8-OHdG) in mitochondria were detected. Changes in the mitochondrial ultrastructure were observed by electron microscopy. Along with the increase of incubation time and dose of INH, activities of mitochondrial SOD and GSH-Px decreased, MDA and 8-OHdG content increased, and the mitochondrial ultrastructure displayed varying degrees of pathological changes. In conclusion, INH was found to cause liver cell injury by inducing mitochondrial DNA damage.

7.
BMC Pharmacol Toxicol ; 19(1): 11, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554950

RESUMO

BACKGROUND: This investigation aimed to evaluate the role of methylation in the regulation of microRNA (miR)-122, miR-125b and miR-106b gene expression and the expression of their target genes during isoniazid (INH)-induced liver injury. METHODS: Rats were given INH 50 mg kg- 1·d- 1 once per day for 3, 7, 10, 14, 21 and 28 days and were sacrificed. Samples of blood and liver were obtained. RESULTS: We analysed the methylation and expression levels of miR-122, miR-125b and miR-106b and their potential gene targets in livers. Liver tissue pathologies, histological scores and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities changed, indicating the occurrence of liver injury. Relative expression levels of miR-122, miR-125b and miR-106b genes in the liver decreased after INH administration and correlated with the scores of liver pathology and serum AST and ALT activities, suggesting that miR-122, miR-125b and miR-106b are associated with INH-induced liver injury. The amount of methylated miR-122, miR-125b and miR-106b in the liver increased after INH administration and correlated with their expression levels, suggesting the role of methylation in regulating miRNA gene expression. Two miR-122 gene targets, cell cycle protein G1 (Cyclin G1) and cationic amino acid transporter-1 (CAT-1), also increased at the mRNA and protein levels, which suggests that lower levels of miR-122 contribute to the upregulation of Cyclin G1 and CAT-1 and might play a role in INH-induced liver injury. Signal transducer and activator of transcription 3 (STAT3) was a common target gene of miR-125b and miR-106b, and its expression levels of mRNA and protein increased after INH administration. The protein expression of phosphorylated (p)-STAT3 and the mRNA expression of RAR-related orphan receptor gamma (RORγt) regulated by p-STAT3 also increased. Meanwhile, the mRNA and protein expression of interleukin (IL)-17 regulated by RORγt, and the mRNA and protein expression of CXCL1 and MIP-2 regulated by IL-17 increased after INH administration. These results demonstrate that lower levels of hepatic miR-125b and miR-106b contribute to the upregulation of STAT3 in stimulating the secretion of inflammatory factors during INH-induced liver injury. CONCLUSIONS: Our results suggested that DNA methylation probably regulates the expression of miRNA genes (miR-122, miR-125b, and miR-106b), affecting the expression of their gene targets (Cyclin G1, CAT-1, and STAT3) and participating in the process of INH-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Ciclina G1/genética , Metilação de DNA , MicroRNAs/metabolismo , Fator de Transcrição STAT3/genética , Canais de Cátion TRPV/genética , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Isoniazida , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Sprague-Dawley
8.
Front Microbiol ; 8: 2371, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238338

RESUMO

Calcimycin is a unique ionophoric antibiotic that is widely used in biochemical and pharmaceutical applications, but the genetic basis underlying the regulatory mechanisms of calcimycin biosynthesis are unclear. Here, we identified the calR3 gene, which encodes a novel TetR family transcriptional regulator and exerts a negative effect on calcimycin biosynthesis. Disruption of calR3 in Streptomyces chartreusis NRRL 3882 led to significantly increased calcimycin and its intermediate cezomycin. Gene expression analysis showed that the transcription of calR3 and its adjacent calT gene were dramatically enhanced (30- and 171-fold, respectively) in GLX26 (ΔcalR3) mutants compared with the wild-type strains. Two CalR3-binding sites within the bidirectional calR3-calT promoter region were identified using a DNase I footprinting assay, indicating that CalR3 directly repressed the transcription of its own gene and the calT gene. In vitro electrophoretic mobility shift assays suggested that both calcimycin and cezomycin can act as CalR3 ligands to induce CalR3 to dissociate from its binding sites. These findings indicate negative feedback for the regulation of CalR3 in calcimycin biosynthesis and suggest that calcimycin production can be improved by manipulating its biosynthetic machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA