Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 145(4)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29437781

RESUMO

Oxygen concentrations vary between tissues of multicellular organisms and change under certain physiological or pathological conditions. Multiple methods have been developed for measuring oxygenation of biological samples in vitro and in vivo However, most require complex equipment, are laborious and have significant limitations. Here we report that oxygen concentration determines the choice between two maturation pathways of DsRed FT (Timer). At high oxygen levels, this DsRed derivate matures predominantly into a red fluorescent isoform. By contrast, a green fluorescent isoform is favored by low oxygen levels. Ratiometric analysis of green and red fluorescence after a pulse of Timer expression in Drosophila larvae provides a record of the history of tissue oxygenation during a subsequent chase period, for the whole animal with single-cell precision. Tissue spreads revealed fine differences in oxygen exposure among different cells of the same organ. We expect that the simplicity and robustness of our approach will greatly impact hypoxia research, especially in small animal models.


Assuntos
Drosophila melanogaster/metabolismo , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Oxigênio/análise , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Microscopia de Fluorescência/métodos , Isoformas de Proteínas/genética
2.
PLoS One ; 9(9): e107333, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203426

RESUMO

The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that prolongs cell proliferation in cultured discs.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Ciclo Celular/genética , Técnicas de Cocultura/métodos , Meios de Cultura , Biologia do Desenvolvimento/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemolinfa/metabolismo , Técnicas In Vitro/métodos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Morfogênese/genética , Asas de Animais/metabolismo
3.
PLoS One ; 8(6): e67208, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840627

RESUMO

The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hemolinfa/metabolismo , Animais , Proteínas Sanguíneas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Privação de Alimentos/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA