Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Mater ; 19(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38324892

RESUMO

Despite significant advances in the management of patients with oral cancer, maxillofacial reconstruction after ablative surgery remains a clinical challenge. In bone tissue engineering, biofabrication strategies have been proposed as promising alternatives to solve issues associated with current therapies and to produce bone substitutes that mimic both the structure and function of native bone. Among them, laser-assisted bioprinting (LAB) has emerged as a relevant biofabrication method to print living cells and biomaterials with micrometric resolution onto a receiving substrate, also called 'biopaper'. Recent studies have demonstrated the benefits of prevascularization using LAB to promote vascularization and bone regeneration, but mechanical and biological optimization of the biopaper are needed. The aim of this study was to apply gelatin-sheet fabrication process to the development of a novel biopaper able to support prevascularization organized by LAB for bone tissue engineering applications. Gelatin-based sheets incorporating bioactive glasses (BGs) were produced using various freezing methods and crosslinking (CL) parameters. The different formulations were characterized in terms of microstructural, physical, mechanical, and biological properties in monoculture and coculture. Based on multi-criteria analysis, a rank scoring method was used to identify the most relevant formulations. The selected biopaper underwent additional characterization regarding its ability to support mineralization and vasculogenesis, its bioactivity potential andin vivodegradability. The biopaper 'Gel5wt% BG1wt%-slow freezing-CL160 °C 24 h' was selected as the best candidate, due to its suitable properties including high porosity (91.69 ± 1.55%), swelling ratio (91.61 ± 0.60%), Young modulus (3.97 × 104± 0.97 × 104Pa) but also its great cytocompatibility, osteogenesis and bioactivity properties. The preorganization of human umbilical vein endothelial cell using LAB onto this new biopaper led to the formation of microvascular networks. This biopaper was also shown to be compatible with 3D-molding and 3D-stacking strategies. This work allowed the development of a novel biopaper adapted to LAB with great potential for vascularized bone biofabrication.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Gelatina/química , Bioimpressão/métodos , Osso e Ossos , Lasers , Alicerces Teciduais/química , Impressão Tridimensional , Hidrogéis/química
2.
Biofabrication ; 14(2)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203068

RESUMO

Grafts aside, current strategies employed to overcome bone loss still fail to reproduce native tissue physiology. Among the emerging bioprinting strategies, laser-assisted bioprinting (LAB) offers very high resolution, allowing designing micrometric patterns in a contactless manner, providing a reproducible tool to test ink formulation. To this date, no LAB associated ink succeeded to provide a reproduciblead integrumbone regeneration on a murine calvaria critical size defect model. Using the Conformité Européenne (CE) approved BioRoot RCS® as a mineral addition to a collagen-enriched ink compatible with LAB, the present study describes the process of the development of a solidifying tricalcium silicate-based ink as a new bone repair promoting substrates in a LAB model. This ink formulation was mechanically characterized by rheology to adjust it for LAB. Printed aside stromal cells from apical papilla (SCAPs), this ink demonstrated a great cytocompatibility, with significantin vitropositive impact upon cell motility, and an early osteogenic differentiation response in the absence of another stimulus. Results indicated that thein vivoapplication of this new ink formulation to regenerate critical size bone defect tends to promote the formation of bone volume fraction without affecting the vascularization of the neo-formed tissue. The use of LAB techniques with this ink failed to demonstrate a complete bone repair, whether SCAPs were printed or not of at its direct proximity. The relevance of the properties of this specific ink formulation would therefore rely on the quantity appliedin situas a defect filler rather than its cell modulation properties observedin vitro. For the first time, a tricalcium silicate-based printed ink, based on rheological analysis, was characterizedin vitroandin vivo, giving valuable information to reach complete bone regeneration through formulation updates. This LAB-based process could be generalized to normalize the characterization of candidate ink for bone regeneration.


Assuntos
Bioimpressão , Animais , Bioimpressão/métodos , Regeneração Óssea , Compostos de Cálcio , Tinta , Lasers , Camundongos , Osteogênese , Impressão Tridimensional , Silicatos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Biofabrication ; 12(3): 035001, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32131058

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the pancreas. It has shown a poor prognosis and a rising incidence in the developed world. Other pathologies associated with this tissue include pancreatitis, a risk condition for pancreatic cancer. The onset of both pancreatitis and pancreatic cancer follows a common pattern: exocrine pancreatic acinar cells undergo a transdifferentiation to duct cells that triggers a 3D restructuration of the pancreatic tissue. However, the exact mechanism underlying this process remains partially undefined. Further understanding the cellular events leading to PDAC could open new avenues in the development of novel therapeutic approaches. Since current 2D cell culture models fail to mimic the tridimensional complexity of the pancreatic tissue, new in vitro models are urgently needed. Here, we generated 3D pancreatic cell spheroid arrays using laser-assisted bioprinting and characterized their phenotypic evolution over time through image analysis and phenotypic characterization. We show that these bioprinted spheroids, composed of both acinar and ductal cells, can replicate the initial stages of PDAC development. This bioprinted miniaturized spheroid-based array model should prove useful for the study of the internal and external factors that contribute to the formation of precursor PDAC lesions and to cancer progression, and may therefore shed light on future PDAC therapy strategies.


Assuntos
Bioimpressão , Carcinogênese/patologia , Lasers , Pâncreas Exócrino/patologia , Neoplasias Pancreáticas/patologia , Impressão Tridimensional , Esferoides Celulares/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinogênese/metabolismo , Linhagem Celular , Transdiferenciação Celular , Receptores ErbB/metabolismo , Gelatina/química , Imageamento Tridimensional , Antígeno Ki-67/metabolismo , Metacrilatos/química , Neoplasias Pancreáticas/metabolismo , Ratos , Esferoides Celulares/metabolismo , Suínos
4.
J Biomed Opt ; 22(4): 41012, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116445

RESUMO

This paper proposes a method for improving the localization and the quantification of the optical parameters in photoacoustic (PA) tomography of biological tissues that are intrinsically heterogeneous in both optical and acoustic properties. It is based on the exploitation of both the PA signal, generated by the heterogeneous optical structures, and the secondary acoustic echoes due to the interaction between a primary PA wave generated near the tissue surface and the heterogeneous acoustic structures. These secondary echoes can also be collected through proper measurements of the PA signals. The experimental procedure is presented along with the method to filter the signal and the reconstruction algorithm that includes the account of the acoustic information.


Assuntos
Acústica , Técnicas Fotoacústicas/normas , Tomografia/métodos , Algoritmos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA